<!DOCTYPE html><html lang="en"><head>
<meta charset="UTF-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<title>KnowRL: Knowledgeable Reinforcement Learning for Factuality</title>
<script src="https://cdn.tailwindcss.com"></script>
<link rel="preconnect" href="https://fonts.googleapis.com"/>
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin=""/>
<link href="https://fonts.googleapis.com/css2?family=Canela:wght@300;400;700&family=Inter:wght@300;400;500;600;700&display=swap" rel="stylesheet"/>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css"/>
<style>
:root {
--primary: #0f172a;
--secondary: #64748b;
--accent: #3b82f6;
--background: #f8fafc;
--surface: #ffffff;
--text-primary: #1e293b;
--text-secondary: #64748b;
--border: #e2e8f0;
}
.font-canela { font-family: 'Canela', serif; }
.font-inter { font-family: 'Inter', sans-serif; }
body {
background: var(--background);
color: var(--text-primary);
font-family: 'Inter', sans-serif;
line-height: 1.6;
}
.hero-gradient {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
}
.text-gradient {
background: linear-gradient(135deg, #3b82f6 0%, #8b5cf6 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
}
.glass-effect {
backdrop-filter: blur(10px);
background: rgba(255, 255, 255, 0.1);
border: 1px solid rgba(255, 255, 255, 0.2);
}
.toc-fixed {
position: fixed;
top: 0;
left: 0;
width: 280px;
height: 100vh;
background: var(--surface);
border-right: 1px solid var(--border);
z-index: 1000;
overflow-y: auto;
padding: 2rem 1.5rem;
}
.main-content {
margin-left: 280px;
min-height: 100vh;
}
.section-divider {
height: 1px;
background: linear-gradient(90deg, transparent, var(--border), transparent);
margin: 4rem 0;
}
.citation-link {
color: var(--accent);
text-decoration: none;
font-weight: 500;
transition: all 0.2s ease;
}
.citation-link:hover {
color: #2563eb;
text-decoration: underline;
}
.highlight-box {
background: linear-gradient(135deg, #f0f9ff 0%, #e0f2fe 100%);
border-left: 4px solid var(--accent);
padding: 1.5rem;
margin: 2rem 0;
border-radius: 0 8px 8px 0;
}
.equation {
background: var(--surface);
border: 1px solid var(--border);
padding: 1rem;
border-radius: 8px;
font-family: 'Courier New', monospace;
margin: 1rem 0;
text-align: center;
}
<span class="mention-invalid">@media</span> (max-width: 1024px) {
.toc-fixed {
transform: translateX(-100%);
transition: transform 0.3s ease;
}
.toc-fixed.open {
transform: translateX(0);
}
.main-content {
margin-left: 0;
}
}
.bento-grid {
display: grid;
grid-template-columns: 2fr 1fr;
grid-template-rows: auto auto;
gap: 1.5rem;
height: 500px;
}
.bento-main {
grid-row: 1 / -1;
position: relative;
overflow: hidden;
border-radius: 16px;
}
.bento-side {
display: flex;
flex-direction: column;
gap: 1.5rem;
}
.bento-card {
background: var(--surface);
border: 1px solid var(--border);
border-radius: 12px;
padding: 1.5rem;
flex: 1;
}
</style>
<base target="_blank">
</head>
<body class="font-inter">
<!-- Table of Contents -->
<nav class="toc-fixed">
<div class="mb-8">
<h3 class="font-canela text-lg font-bold text-slate-900 mb-4">Contents</h3>
<ul class="space-y-2 text-sm">
<li>
<a href="#executive-summary" class="citation-link">Executive Summary</a>
</li>
<li>
<a href="#algorithm-design" class="citation-link">Core Algorithm Design</a>
</li>
<li>
<a href="#performance" class="citation-link">Performance Analysis</a>
</li>
<li>
<a href="#ai-safety" class="citation-link">AI Safety & Interpretability</a>
</li>
<li>
<a href="#industry-impact" class="citation-link">High-Stakes Applications</a>
</li>
<li>
<a href="#literature" class="citation-link">Literature Review</a>
</li>
<li>
<a href="#future-directions" class="citation-link">Future Research</a>
</li>
</ul>
</div>
<div class="mt-8 pt-8 border-t border-slate-200">
<h4 class="font-semibold text-xs text-slate-600 uppercase tracking-wider mb-3">Key Metrics</h4>
<div class="space-y-3 text-xs">
<div class="flex justify-between">
<span class="text-slate-600">Hallucination Reduction</span>
<span class="font-semibold text-blue-600">20-21%</span>
</div>
<div class="flex justify-between">
<span class="text-slate-600">GPQA Improvement</span>
<span class="font-semibold text-green-600">+2.8%</span>
</div>
<div class="flex justify-between">
<span class="text-slate-600">Refusal Rate Impact</span>
<span class="font-semibold text-orange-600">Critical</span>
</div>
</div>
</div>
</nav>
<!-- Main Content -->
<main class="main-content">
<!-- Hero Section -->
<section class="relative overflow-hidden">
<div class="bento-grid max-w-7xl mx-auto p-8">
<!-- Main Hero Card -->
<div class="bento-main hero-gradient relative">
<div class="absolute inset-0 bg-black/20"></div>
<img src="https://kimi-web-img.moonshot.cn/img/media.springernature.com/5b750e5d3f6c3af0d1127005d7395d9cd7c15b90.png" alt="Abstract neural network visualization" class="absolute inset-0 w-full h-full object-cover opacity-30" size="large" aspect="wide" query="abstract neural network visualization" referrerpolicy="no-referrer" data-modified="1" data-score="0.00"/>
<div class="relative z-10 p-8 h-full flex flex-col justify-center">
<div class="max-w-2xl">
<h1 class="font-canela text-4xl md:text-5xl font-bold text-white mb-6 leading-tight">
<em class="text-gradient">KnowRL:</em>
<br/>
Knowledgeable Reinforcement Learning for Factuality
</h1>
<p class="text-xl text-white/90 mb-8 leading-relaxed">
A comprehensive research report on mitigating hallucinations in slow-thinking language models through dense, process-level factual supervision
</p>
<div class="flex items-center space-x-6 text-white/80">
<div class="flex items-center space-x-2">
<i class="fas fa-brain text-blue-300"></i>
<span class="text-sm">AI Safety Research</span>
</div>
<div class="flex items-center space-x-2">
<i class="fas fa-shield-alt text-green-300"></i>
<span class="text-sm">Trustworthy AI</span>
</div>
</div>
</div>
</div>
</div>
<!-- Side Cards -->
<div class="bento-side">
<div class="bento-card">
<div class="flex items-center space-x-3 mb-3">
<i class="fas fa-chart-line text-blue-600 text-xl"></i>
<h3 class="font-canela font-bold text-lg">Performance Gains</h3>
</div>
<p class="text-slate-600 text-sm">20-21% reduction in hallucination rates across benchmark datasets</p>
</div>
<div class="bento-card">
<div class="flex items-center space-x-3 mb-3">
<i class="fas fa-microscope text-purple-600 text-xl"></i>
<h3 class="font-canela font-bold text-lg">Technical Innovation</h3>
</div>
<p class="text-slate-600 text-sm">Novel factuality reward mechanism with knowledge verification integration</p>
</div>
</div>
</div>
</section>
<!-- Executive Summary -->
<section id="executive-summary" class="max-w-4xl mx-auto px-8 py-16">
<h2 class="font-canela text-4xl font-bold mb-8 text-slate-900">Executive Summary</h2>
<div class="highlight-box">
<h3 class="font-canela text-xl font-bold mb-4 text-slate-900">Core Problem: LLM Hallucination in "Slow-Thinking" Models</h3>
<p class="text-slate-700 mb-4">
Large Language Models employing "slow-thinking" or chain-of-thought reasoning demonstrate remarkable capabilities but suffer from critical reliability issues. The tendency to generate factually incorrect content—known as "hallucination"—undermines their deployment in high-stakes domains <a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>.
</p>
<p class="text-slate-700">
Traditional reinforcement learning methods, relying on outcome-oriented rewards, exacerbate this problem by failing to provide factual supervision over intermediate reasoning steps <a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>.
</p>
</div>
<div class="grid md:grid-cols-2 gap-8 mt-12">
<div class="bg-white border border-slate-200 rounded-lg p-6">
<h3 class="font-canela text-xl font-bold mb-4 text-slate-900">KnowRL's Solution</h3>
<p class="text-slate-700 mb-4">
A novel <strong>knowledgeable reinforcement learning</strong> framework that embeds factual supervision directly into the training loop. The core innovation integrates a <strong>factuality reward</strong> calculated by decomposing reasoning chains into atomic facts and verifying them against external knowledge bases <a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>.
</p>
<ul class="space-y-2 text-sm text-slate-600">
<li class="flex items-center space-x-2">
<i class="fas fa-check-circle text-green-500 text-xs"></i>
<span>Dense, process-level factual supervision</span>
</li>
<li class="flex items-center space-x-2">
<i class="fas fa-check-circle text-green-500 text-xs"></i>
<span>Knowledge boundary recognition</span>
</li>
<li class="flex items-center space-x-2">
<i class="fas fa-check-circle text-green-500 text-xs"></i>
<span>Fact-based slow thinking guidance</span>
</li>
</ul>
</div>
<div class="bg-white border border-slate-200 rounded-lg p-6">
<h3 class="font-canela text-xl font-bold mb-4 text-slate-900">Key Findings</h3>
<div class="space-y-4">
<div class="flex justify-between items-center">
<span class="text-slate-700">Hallucination Reduction</span>
<span class="font-bold text-green-600">20.3-21.4%</span>
</div>
<div class="flex justify-between items-center">
<span class="text-slate-700">GPQA Accuracy</span>
<span class="font-bold text-blue-600">29.2% → 32.0%</span>
</div>
<div class="flex justify-between items-center">
<span class="text-slate-700">Reasoning Preservation</span>
<span class="font-bold text-purple-600">Maintained</span>
</div>
</div>
<p class="text-sm text-slate-600 mt-4">
Experimental results demonstrate significant hallucination reduction while maintaining or enhancing complex reasoning capabilities <a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>.
</p>
</div>
</div>
</section>
<div class="section-divider max-w-4xl mx-auto"></div>
<!-- Core Algorithm Design -->
<section id="algorithm-design" class="max-w-4xl mx-auto px-8 py-16">
<h2 class="font-canela text-4xl font-bold mb-12 text-slate-900">Core Algorithm Design and Training Mechanism</h2>
<div class="mb-12">
<h3 class="font-canela text-2xl font-bold mb-6 text-slate-900">Two-Stage Training Pipeline</h3>
<div class="grid md:grid-cols-2 gap-8">
<div class="bg-gradient-to-br from-blue-50 to-indigo-50 border border-blue-200 rounded-lg p-6">
<div class="flex items-center space-x-3 mb-4">
<div class="w-8 h-8 bg-blue-500 rounded-full flex items-center justify-center text-white font-bold text-sm">1</div>
<h4 class="font-canela text-lg font-bold text-slate-900">Cold-Start SFT</h4>
</div>
<p class="text-slate-700 text-sm mb-4">
Supervised Fine-Tuning initializes the model with structured output format using question-answer pairs with reasoning traces <a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>.
</p>
<div class="bg-white rounded p-3 border border-blue-200">
<code class="text-xs text-slate-600">
<think>...</think><br/>
<answer>...</answer>
</code>
</div>
</div>
<div class="bg-gradient-to-br from-purple-50 to-pink-50 border border-purple-200 rounded-lg p-6">
<div class="flex items-center space-x-3 mb-4">
<div class="w-8 h-8 bg-purple-500 rounded-full flex items-center justify-center text-white font-bold text-sm">2</div>
<h4 class="font-canela text-lg font-bold text-slate-900">Factuality-Guided RL</h4>
</div>
<p class="text-slate-700 text-sm mb-4">
Core KnowRL stage using composite reward function with factuality verification to align model behavior with factual accuracy <a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>.
</p>
<div class="bg-white rounded p-3 border border-purple-200">
<div class="text-xs text-slate-600 space-y-1">
<div>• Dense factuality rewards</div>
<div>• Knowledge verification</div>
<div>• Boundary recognition</div>
</div>
</div>
</div>
</div>
</div>
<div class="mb-12">
<h3 class="font-canela text-2xl font-bold mb-6 text-slate-900">Knowledge Verification (KV) Module</h3>
<div class="space-y-6">
<div class="bg-white border border-slate-200 rounded-lg p-6">
<h4 class="font-semibold text-lg mb-4 text-slate-900">1. Atomic Fact Decomposition</h4>
<p class="text-slate-700 mb-4">
The KV module decomposes reasoning trace <code class="bg-slate-100 px-2 py-1 rounded">o_think</code> into discrete atomic facts using decomposition function <code class="bg-slate-100 px-2 py-1 rounded">Φ</code>
<a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>:
</p>
<div class="equation">
Φ(o_think) = {f₁, f₂, ..., f_M}
</div>
<p class="text-sm text-slate-600 mt-3">
This granular approach enables precise identification of factual vs. fabricated reasoning components.
</p>
</div>
<div class="bg-white border border-slate-200 rounded-lg p-6">
<h4 class="font-semibold text-lg mb-4 text-slate-900">2. External Knowledge Integration</h4>
<p class="text-slate-700 mb-4">
Each atomic fact <code class="bg-slate-100 px-2 py-1 rounded">f_j</code> is verified against external knowledge base <code class="bg-slate-100 px-2 py-1 rounded">K</code>, retrieving relevant knowledge <code class="bg-slate-100 px-2 py-1 rounded">K_x</code>
<a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>.
</p>
<div class="highlight-box">
<p class="text-sm text-slate-700">
<strong>Key Advantage:</strong> Provides objective, verifiable standard of truth independent of model's parametric knowledge.
</p>
</div>
</div>
<div class="bg-white border border-slate-200 rounded-lg p-6">
<h4 class="font-semibold text-lg mb-4 text-slate-900">3. Similarity-Based Verification</h4>
<p class="text-slate-700 mb-4">
Verification model <code class="bg-slate-100 px-2 py-1 rounded">v(f_j, K_x)</code> outputs confidence scores between 0-1, using <code class="bg-slate-100 px-2 py-1 rounded">MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli</code> for natural language inference <a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>.
</p>
</div>
</div>
</div>
<div class="mb-12">
<h3 class="font-canela text-2xl font-bold mb-6 text-slate-900">Composite Reward Function</h3>
<div class="bg-gradient-to-r from-slate-50 to-blue-50 border border-slate-200 rounded-lg p-8">
<div class="equation mb-6">
R_total(o) = α · r_format(o) + β · r_correct(o) + γ · r_fact(o)
</div>
<div class="grid md:grid-cols-3 gap-6">
<div class="text-center">
<div class="w-12 h-12 bg-blue-500 rounded-full flex items-center justify-center text-white font-bold mx-auto mb-3">α</div>
<h4 class="font-semibold mb-2">Format Reward</h4>
<p class="text-sm text-slate-600">Binary reward enforcing output structure</p>
</div>
<div class="text-center">
<div class="w-12 h-12 bg-green-500 rounded-full flex items-center justify-center text-white font-bold mx-auto mb-3">β</div>
<h4 class="font-semibold mb-2">Correctness Reward</h4>
<p class="text-sm text-slate-600">Granular evaluation of final answer accuracy</p>
</div>
<div class="text-center">
<div class="w-12 h-12 bg-purple-500 rounded-full flex items-center justify-center text-white font-bold mx-auto mb-3">γ</div>
<h4 class="font-semibold mb-2">Factuality Reward</h4>
<p class="text-sm text-slate-600">Average verification scores of atomic facts</p>
</div>
</div>
<div class="mt-6 text-center">
<p class="text-sm text-slate-600">
With <code class="bg-white px-2 py-1 rounded border">α = β = γ = 1</code> for balanced optimization <a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>
</p>
</div>
</div>
</div>
<div class="highlight-box">
<h4 class="font-canela text-lg font-bold mb-3 text-slate-900">Reinforcement Learning Optimization</h4>
<p class="text-slate-700 mb-3">
KnowRL utilizes <strong>Group-Relative Policy Optimization (GRPO)</strong> as its foundation, enhanced with regularization techniques including entropy bonuses and KL divergence penalties <a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>.
</p>
<p class="text-slate-600 text-sm">
This approach ensures stable training while leveraging the rich, composite reward signal to guide policy updates toward factually grounded behavior.
</p>
</div>
</section>
<div class="section-divider max-w-4xl mx-auto"></div>
<!-- Performance Analysis -->
<section id="performance" class="max-w-4xl mx-auto px-8 py-16">
<h2 class="font-canela text-4xl font-bold mb-12 text-slate-900">Application and Performance in Reducing Hallucinations</h2>
<div class="mb-12">
<h3 class="font-canela text-2xl font-bold mb-6 text-slate-900">Experimental Setup and Datasets</h3>
<div class="grid md:grid-cols-2 gap-8 mb-8">
<div class="bg-white border border-slate-200 rounded-lg p-6">
<h4 class="font-semibold text-lg mb-4 text-slate-900">Reasoning Benchmarks</h4>
<div class="space-y-4">
<div class="flex items-center space-x-3">
<i class="fas fa-graduation-cap text-blue-600"></i>
<div>
<div class="font-medium">GPQA</div>
<div class="text-sm text-slate-600">Graduate-Level Google-Proof Q&A</div>
</div>
</div>
<div class="flex items-center space-x-3">
<i class="fas fa-calculator text-green-600"></i>
<div>
<div class="font-medium">AIME 2025</div>
<div class="text-sm text-slate-600">American Invitational Mathematics Examination</div>
</div>
</div>
</div>
<p class="text-sm text-slate-600 mt-4">
Challenging benchmarks requiring genuine reasoning and knowledge synthesis <a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>
</p>
</div>
<div class="bg-white border border-slate-200 rounded-lg p-6">
<h4 class="font-semibold text-lg mb-4 text-slate-900">Factuality Benchmarks</h4>
<div class="space-y-4">
<div class="flex items-center space-x-3">
<i class="fas fa-question-circle text-purple-600"></i>
<div>
<div class="font-medium">SimpleQA</div>
<div class="text-sm text-slate-600">Factual question answering</div>
</div>
</div>
<div class="flex items-center space-x-3">
<i class="fas fa-shield-alt text-red-600"></i>
<div>
<div class="font-medium">TruthfulQA</div>
<div class="text-sm text-slate-600">Truthfulness evaluation</div>
</div>
</div>
</div>
<p class="text-sm text-slate-600 mt-4">
Datasets specifically designed to test for hallucinations and factual accuracy <a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>
</p>
</div>
</div>
</div>
<div class="mb-12">
<h3 class="font-canela text-2xl font-bold mb-8 text-slate-900">Performance Results</h3>
<div class="bg-gradient-to-r from-green-50 to-blue-50 border border-green-200 rounded-lg p-8">
<h4 class="font-canela text-xl font-bold mb-6 text-slate-900">Hallucination Reduction Achievements</h4>
<div class="grid md:grid-cols-2 gap-8">
<div class="bg-white rounded-lg p-6 border border-green-200">
<div class="flex items-center justify-between mb-4">
<h5 class="font-semibold text-slate-900">DeepSeek-R1-Distill-Qwen-7B</h5>
<i class="fas fa-arrow-down text-green-600 text-xl"></i>
</div>
<div class="text-3xl font-bold text-green-600 mb-2">20.3%</div>
<div class="text-sm text-slate-600">Error rate reduction on SimpleQA</div>
<div class="mt-4 text-xs text-slate-500">
While improving GPQA accuracy from 29.2% to 32.0% <a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>
</div>
</div>
<div class="bg-white rounded-lg p-6 border border-blue-200">
<div class="flex items-center justify-between mb-4">
<h5 class="font-semibold text-slate-900">Skywork-OR1-7B-Preview</h5>
<i class="fas fa-arrow-down text-blue-600 text-xl"></i>
</div>
<div class="text-3xl font-bold text-blue-600 mb-2">21.4%</div>
<div class="text-sm text-slate-600">Error rate reduction on SimpleQA</div>
<div class="mt-4 text-xs text-slate-500">
Maintained high GPQA accuracy with AIME 2025 improvement <a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>
</div>
</div>
</div>
</div>
</div>
<div class="mb-12">
<h3 class="font-canela text-2xl font-bold mb-6 text-slate-900">Ablation Studies</h3>
<div class="bg-red-50 border border-red-200 rounded-lg p-6">
<h4 class="font-semibold text-lg mb-4 text-red-900">Critical Role of Refusal Reward</h4>
<p class="text-slate-700 mb-4">
When positive reward for appropriate refusals was changed to penalty:
</p>
<div class="flex items-center space-x-4">
<div class="text-center">
<div class="text-2xl font-bold text-red-600">28.6% → 44.4%</div>
<div class="text-sm text-slate-600">Incorrect rate increase</div>
</div>
<div class="text-sm text-slate-600">
This highlights the crucial role of incentivizing knowledge boundary recognition <a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>
</div>
</div>
</div>
</div>
<div class="highlight-box">
<h4 class="font-canela text-lg font-bold mb-3 text-slate-900">Comparative Analysis</h4>
<p class="text-slate-700 mb-3">
KnowRL consistently outperformed standard RLHF and factuality-focused methods like FLAME on factuality benchmarks while maintaining or improving reasoning capabilities <a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>.
</p>
<p class="text-slate-600 text-sm">
The dense, process-level supervision provides more effective hallucination mitigation than outcome-oriented approaches.
</p>
</div>
</section>
<div class="section-divider max-w-4xl mx-auto"></div>
<!-- AI Safety and Interpretability -->
<section id="ai-safety" class="max-w-4xl mx-auto px-8 py-16">
<h2 class="font-canela text-4xl font-bold mb-12 text-slate-900">Broader Impact on AI Safety and Model Interpretability</h2>
<div class="mb-12">
<h3 class="font-canela text-2xl font-bold mb-8 text-slate-900">Enhancing AI Safety through Factual Grounding</h3>
<div class="grid md:grid-cols-3 gap-6 mb-8">
<div class="bg-white border border-slate-200 rounded-lg p-6">
<div class="w-12 h-12 bg-red-100 rounded-lg flex items-center justify-center mb-4">
<i class="fas fa-exclamation-triangle text-red-600 text-xl"></i>
</div>
<h4 class="font-semibold mb-3 text-slate-900">Misinformation Mitigation</h4>
<p class="text-sm text-slate-600">
Addresses critical safety concerns in healthcare, legal, and business domains where AI-driven misinformation can have severe consequences <a href="https://www.preprints.org/manuscript/202505.1405" class="citation-link">[295]</a>
<a href="https://repositorio.uasb.edu.ec/bitstream/10644/10527/1/T4604-MDED-Echeverria-Legal.pdf" class="citation-link">[296]</a>.
</p>
</div>
<div class="bg-white border border-slate-200 rounded-lg p-6">
<div class="w-12 h-12 bg-green-100 rounded-lg flex items-center justify-center mb-4">
<i class="fas fa-handshake text-green-600 text-xl"></i>
</div>
<h4 class="font-semibold mb-3 text-slate-900">Trust Building</h4>
<p class="text-sm text-slate-600">
Factual grounding helps build more dependable and transparent AI systems, fostering user confidence in critical applications <a href="https://arxiv.org/html/2503.05777v2" class="citation-link">[294]</a>.
</p>
</div>
<div class="bg-white border border-slate-200 rounded-lg p-6">
<div class="w-12 h-12 bg-blue-100 rounded-lg flex items-center justify-center mb-4">
<i class="fas fa-balance-scale text-blue-600 text-xl"></i>
</div>
<h4 class="font-semibold mb-3 text-slate-900">Value Alignment</h4>
<p class="text-sm text-slate-600">
Integrates factual accuracy as a core component of AI alignment, ensuring systems adhere to the human value of truth <a href="https://arxiv.org/html/2409.18968v2" class="citation-link">[283]</a>.
</p>
</div>
</div>
<div class="bg-gradient-to-r from-amber-50 to-orange-50 border border-amber-200 rounded-lg p-6">
<h4 class="font-semibold text-lg mb-4 text-amber-900">Real-World Safety Impact</h4>
<div class="grid md:grid-cols-2 gap-6">
<div>
<h5 class="font-medium mb-2 text-slate-900">Legal Domain</h5>
<p class="text-sm text-slate-700 mb-3">
False legal citations from AI hallucinations have led to professional sanctions and legal repercussions <a href="https://repositorio.uasb.edu.ec/bitstream/10644/10527/1/T4604-MDED-Echeverria-Legal.pdf" class="citation-link">[296]</a>.
</p>
</div>
<div>
<h5 class="font-medium mb-2 text-slate-900">Healthcare</h5>
<p class="text-sm text-slate-700 mb-3">
Medical misinformation can lead to incorrect diagnoses and treatment recommendations, jeopardizing patient safety <a href="https://arxiv.org/html/2503.05777v2" class="citation-link">[294]</a>.
</p>
</div>
</div>
</div>
</div>
<div class="mb-12">
<h3 class="font-canela text-2xl font-bold mb-8 text-slate-900">Improving Model Interpretability</h3>
<div class="bg-white border border-slate-200 rounded-lg p-8">
<div class="grid md:grid-cols-2 gap-8">
<div>
<h4 class="font-semibold text-lg mb-4 text-slate-900">Chain-of-Thought Verification</h4>
<p class="text-slate-700 mb-4">
KnowRL transforms CoT from explanatory tool to robust verification framework by decomposing reasoning into verifiable atomic facts <a href="https://arxiv.org/html/2409.18968v2" class="citation-link">[283]</a>.
</p>
<div class="space-y-3">
<div class="flex items-center space-x-2">
<i class="fas fa-eye text-blue-600 text-sm"></i>
<span class="text-sm text-slate-600">Transparent decision-making</span>
</div>
<div class="flex items-center space-x-2">
<i class="fas fa-search text-green-600 text-sm"></i>
<span class="text-sm text-slate-600">Granular error analysis</span>
</div>
<div class="flex items-center space-x-2">
<i class="fas fa-bug text-purple-600 text-sm"></i>
<span class="text-sm text-slate-600">Debuggable reasoning</span>
</div>
</div>
</div>
<div>
<h4 class="font-semibold text-lg mb-4 text-slate-900">Validation vs. Explanation Balance</h4>
<p class="text-slate-700 mb-4">
KnowRL offers resolution to the validation-explanation debate by achieving both high accuracy and interpretability <a href="https://www.mdpi.com/2306-5354/12/4/375" class="citation-link">[284]</a>.
</p>
<div class="bg-slate-50 rounded-lg p-4">
<div class="text-sm text-slate-600 space-y-2">
<div class="flex items-center space-x-2">
<i class="fas fa-check text-green-600 text-xs"></i>
<span><strong>Validation View:</strong> High accuracy maintained</span>
</div>
<div class="flex items-center space-x-2">
<i class="fas fa-check text-green-600 text-xs"></i>
<span><strong>Explanation View:</strong> Transparent reasoning provided</span>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<div class="section-divider max-w-4xl mx-auto"></div>
<!-- High-Stakes Applications -->
<section id="industry-impact" class="max-w-4xl mx-auto px-8 py-16">
<h2 class="font-canela text-4xl font-bold mb-12 text-slate-900">Potential Impact in High-Stakes Industries</h2>
<div class="mb-12">
<h3 class="font-canela text-2xl font-bold mb-8 text-slate-900">Medical Domain Applications</h3>
<div class="grid md:grid-cols-2 gap-8 mb-8">
<div class="bg-gradient-to-br from-blue-50 to-cyan-50 border border-blue-200 rounded-lg p-6">
<div class="w-12 h-12 bg-blue-500 rounded-lg flex items-center justify-center mb-4">
<i class="fas fa-user-md text-white text-xl"></i>
</div>
<h4 class="font-semibold text-lg mb-3 text-slate-900">Patient Safety</h4>
<p class="text-sm text-slate-700 mb-4">
Addresses medical hallucinations that can lead to incorrect diagnoses, inappropriate treatments, and compromised patient safety <a href="https://arxiv.org/html/2503.05777v2" class="citation-link">[294]</a>.
</p>
<div class="bg-white rounded p-3 border border-blue-200">
<div class="text-xs text-slate-600 space-y-1">
<div>• Drug interaction verification</div>
<div>• Lab result interpretation</div>
<div>• Treatment recommendation validation</div>
</div>
</div>
</div>
<div class="bg-gradient-to-br from-green-50 to-emerald-50 border border-green-200 rounded-lg p-6">
<div class="w-12 h-12 bg-green-500 rounded-lg flex items-center justify-center mb-4">
<i class="fas fa-stethoscope text-white text-xl"></i>
</div>
<h4 class="font-semibold text-lg mb-3 text-slate-900">Diagnostic Reliability</h4>
<p class="text-sm text-slate-700 mb-4">
Enhances reliability of AI-assisted diagnosis and treatment planning by grounding recommendations in verifiable medical evidence <a href="https://www.medrxiv.org/content/10.1101/2025.02.28.25323115v1.full-text" class="citation-link">[297]</a>.
</p>
<div class="bg-white rounded p-3 border border-green-200">
<div class="text-xs text-slate-600 space-y-1">
<div>• Evidence-based reasoning</div>
<div>• Clinical guideline alignment</div>
<div>• Research-backed suggestions</div>
</div>
</div>
</div>
</div>
<div class="bg-white border border-slate-200 rounded-lg p-6">
<h4 class="font-semibold text-lg mb-4 text-slate-900">Ethical and Legal Considerations</h4>
<p class="text-slate-700 mb-4">
KnowRL's transparency helps address complex questions of accountability and liability in AI-driven medical decisions by providing clear, auditable reasoning trails <a href="https://www.medrxiv.org/content/10.1101/2025.02.28.25323115v1.full-text" class="citation-link">[297]</a>.
</p>
<div class="grid md:grid-cols-3 gap-4">
<div class="text-center">
<i class="fas fa-gavel text-blue-600 text-2xl mb-2"></i>
<div class="text-sm font-medium text-slate-900">Legal Clarity</div>
</div>
<div class="text-center">
<i class="fas fa-shield-alt text-green-600 text-2xl mb-2"></i>
<div class="text-sm font-medium text-slate-900">Risk Reduction</div>
</div>
<div class="text-center">
<i class="fas fa-balance-scale text-purple-600 text-2xl mb-2"></i>
<div class="text-sm font-medium text-slate-900">Accountability</div>
</div>
</div>
</div>
</div>
<div class="mb-12">
<h3 class="font-canela text-2xl font-bold mb-8 text-slate-900">Legal Domain Applications</h3>
<div class="bg-gradient-to-r from-amber-50 to-yellow-50 border border-amber-200 rounded-lg p-8">
<h4 class="font-canela text-xl font-bold mb-6 text-amber-900">Transforming Legal Practice</h4>
<div class="grid md:grid-cols-2 gap-8">
<div>
<h5 class="font-semibold mb-4 text-slate-900">Research & Document Generation</h5>
<p class="text-slate-700 mb-4">
Reduces factual errors in legal research and automated document generation, where hallucinated case citations have led to professional sanctions <a href="https://repositorio.uasb.edu.ec/bitstream/10644/10527/1/T4604-MDED-Echeverria-Legal.pdf" class="citation-link">[296]</a>.
</p>
<div class="bg-white rounded p-3 border border-amber-200">
<div class="text-xs text-slate-600 space-y-1">
<div>• Case law verification</div>
<div>• Statutory interpretation</div>
<div>• Precedent analysis</div>
</div>
</div>
</div>
<div>
<h5 class="font-semibold mb-4 text-slate-900">Compliance & Accountability</h5>
<p class="text-slate-700 mb-4">
Helps lawyers meet ethical obligations of competence while providing auditable records for regulatory compliance and professional standards <a href="https://repositorio.uasb.edu.ec/bitstream/10644/10527/1/T4604-MDED-Echeverria-Legal.pdf" class="citation-link">[296]</a>.
</p>
<div class="bg-white rounded p-3 border border-amber-200">
<div class="text-xs text-slate-600 space-y-1">
<div>• Duty of competence</div>
<div>• Regulatory compliance</div>
<div>• Professional standards</div>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<div class="section-divider max-w-4xl mx-auto"></div>
<!-- Literature Review -->
<section id="literature" class="max-w-4xl mx-auto px-8 py-16">
<h2 class="font-canela text-4xl font-bold mb-12 text-slate-900">Literature Review and Critical Analysis</h2>
<div class="mb-12">
<h3 class="font-canela text-2xl font-bold mb-8 text-slate-900">Existing Hallucination Mitigation Strategies</h3>
<div class="space-y-8">
<div class="bg-white border border-slate-200 rounded-lg p-6">
<div class="flex items-center space-x-4 mb-4">
<div class="w-12 h-12 bg-blue-100 rounded-lg flex items-center justify-center">
<i class="fas fa-database text-blue-600 text-xl"></i>
</div>
<div>
<h4 class="font-semibold text-lg text-slate-900">Retrieval-Augmented Generation (RAG)</h4>
<div class="text-sm text-slate-600">External knowledge grounding</div>
</div>
</div>
<p class="text-slate-700 mb-4">
RAG methods like FLAME retrieve relevant documents to guide generation, providing up-to-date information but limited by retrieval quality and knowledge base coverage <a href="https://www.emergentmind.com/papers/2405.01525" class="citation-link">[289]</a>.
</p>
<div class="grid md:grid-cols-2 gap-4">
<div class="bg-green-50 rounded p-3 border border-green-200">
<div class="text-sm font-medium text-green-900 mb-1">Strengths</div>
<div class="text-xs text-slate-600">• Access to current information
<br/>• Verifiable knowledge sources
</div>
</div>
<div class="bg-red-50 rounded p-3 border border-red-200">
<div class="text-sm font-medium text-red-900 mb-1">Limitations</div>
<div class="text-xs text-slate-600">• Retrieval quality dependence
<br/>• Integration challenges
</div>
</div>
</div>
</div>
<div class="bg-white border border-slate-200 rounded-lg p-6">
<div class="flex items-center space-x-4 mb-4">
<div class="w-12 h-12 bg-green-100 rounded-lg flex items-center justify-center">
<i class="fas fa-code text-green-600 text-xl"></i>
</div>
<div>
<h4 class="font-semibold text-lg text-slate-900">Prompt Engineering & Fine-Tuning</h4>
<div class="text-sm text-slate-600">Internal reasoning improvement</div>
</div>
</div>
<p class="text-slate-700 mb-4">
Techniques like Chain-of-Thought prompting and domain-specific fine-tuning improve internal reasoning but lack external verification and can be costly to implement.
</p>
<div class="grid md:grid-cols-2 gap-4">
<div class="bg-green-50 rounded p-3 border border-green-200">
<div class="text-sm font-medium text-green-900 mb-1">Strengths</div>
<div class="text-xs text-slate-600">• Task-specific optimization
<br/>• Improved reasoning patterns
</div>
</div>
<div class="bg-red-50 rounded p-3 border border-red-200">
<div class="text-sm font-medium text-red-900 mb-1">Limitations</div>
<div class="text-xs text-slate-600">• High implementation cost
<br/>• Limited generalization
</div>
</div>
</div>
</div>
<div class="bg-white border border-slate-200 rounded-lg p-6">
<div class="flex items-center space-x-4 mb-4">
<div class="w-12 h-12 bg-purple-100 rounded-lg flex items-center justify-center">
<i class="fas fa-users text-purple-600 text-xl"></i>
</div>
<div>
<h4 class="font-semibold text-lg text-slate-900">Reinforcement Learning from Human Feedback (RLHF)</h4>
<div class="text-sm text-slate-600">Preference-based alignment</div>
</div>
</div>
<p class="text-slate-700 mb-4">
RLHF aligns models with human preferences but often relies on holistic judgments of final outputs rather than detailed evaluation of reasoning processes.
</p>
<div class="bg-yellow-50 rounded p-3 border border-yellow-200">
<div class="text-sm font-medium text-yellow-900 mb-2">Key Challenge</div>
<div class="text-xs text-slate-600">
Reward signals based on final output pleasingness may miss subtle factual errors in reasoning steps.
</div>
</div>
</div>
</div>
</div>
<div class="mb-12">
<h3 class="font-canela text-2xl font-bold mb-8 text-slate-900">Critical Analysis of KnowRL</h3>
<div class="grid md:grid-cols-2 gap-8">
<div class="bg-green-50 border border-green-200 rounded-lg p-6">
<h4 class="font-semibold text-lg mb-4 text-green-900">Key Strengths</h4>
<div class="space-y-4">
<div>
<h5 class="font-medium mb-2 text-slate-900">Dense Process Supervision</h5>
<p class="text-sm text-slate-700">
Provides granular, step-by-step factuality evaluation rather than outcome-only assessment, enabling more nuanced learning signals.
</p>
</div>
<div>
<h5 class="font-medium mb-2 text-slate-900">External Knowledge Integration</h5>
<p class="text-sm text-slate-700">
Objective verification against trusted knowledge bases provides independent truth standard, reducing reliance on potentially flawed parametric knowledge.
</p>
</div>
</div>
</div>
<div class="bg-red-50 border border-red-200 rounded-lg p-6">
<h4 class="font-semibold text-lg mb-4 text-red-900">Current Limitations</h4>
<div class="space-y-4">
<div>
<h5 class="font-medium mb-2 text-slate-900">Knowledge Base Dependency</h5>
<p class="text-sm text-slate-700">
Effectiveness directly tied to knowledge base quality, completeness, and freshness. Rapidly evolving domains pose particular challenges.
</p>
</div>
<div>
<h5 class="font-medium mb-2 text-slate-900">Computational Overhead</h5>
<p class="text-sm text-slate-700">
Fact decomposition and verification processes can be computationally expensive, potentially limiting scalability to very large models or datasets.
</p>
</div>
</div>
</div>
</div>
</div>
<div class="highlight-box">
<h4 class="font-canela text-lg font-bold mb-3 text-slate-900">Related Work Comparison</h4>
<p class="text-slate-700 mb-3">
KnowRL distinguishes itself from related approaches like RLFact and FLAME through its integration of knowledge verification directly into the reinforcement learning loop, enabling more dynamic and adaptive learning <a href="https://arxiv.org/html/2506.19807v3" class="citation-link">[280]</a>.
</p>
<p class="text-slate-600 text-sm">
The approach represents a significant advancement in systematic factuality enhancement while maintaining reasoning capabilities.
</p>
</div>
</section>
<div class="section-divider max-w-4xl mx-auto"></div>
<!-- Future Research Directions -->
<section id="future-directions" class="max-w-4xl mx-auto px-8 py-16">
<h2 class="font-canela text-4xl font-bold mb-12 text-slate-900">Future Research Directions</h2>
<div class="mb-12">
<h3 class="font-canela text-2xl font-bold mb-8 text-slate-900">Extending Factuality-Aware Alignment</h3>
<div class="grid md:grid-cols-3 gap-6">
<div class="bg-gradient-to-br from-purple-50 to-pink-50 border border-purple-200 rounded-lg p-6">
<div class="w-12 h-12 bg-purple-500 rounded-lg flex items-center justify-center mb-4">
<i class="fas fa-brain text-white text-xl"></i>
</div>
<h4 class="font-semibold mb-3 text-slate-900">Logical & Ethical Alignment</h4>
<p class="text-sm text-slate-700 mb-4">
Integrate additional reward components for logical consistency and ethical reasoning, building systems that are not only knowledgeable but also wise and responsible.
</p>
<div class="bg-white rounded p-3 border border-purple-200">
<div class="text-xs text-slate-600 space-y-1">
<div>• Logical fallacy detection</div>
<div>• Ethical principle alignment</div>
<div>• Value-guided reasoning</div>
</div>
</div>
</div>
<div class="bg-gradient-to-br from-blue-50 to-cyan-50 border border-blue-200 rounded-lg p-6">
<div class="w-12 h-12 bg-blue-500 rounded-lg flex items-center justify-center mb-4">
<i class="fas fa-sync-alt text-white text-xl"></i>
</div>
<h4 class="font-semibold mb-3 text-slate-900">Dynamic Knowledge Adaptation</h4>
<p class="text-sm text-slate-700 mb-4">
Develop methods for adapting to evolving knowledge bases, handling conflicting information, and recognizing temporal changes in factual landscapes.
</p>
<div class="bg-white rounded p-3 border border-blue-200">
<div class="text-xs text-slate-600 space-y-1">
<div>• Continuous knowledge updates</div>
<div>• Conflict resolution mechanisms</div>
<div>• Temporal fact awareness</div>
</div>
</div>
</div>
<div class="bg-gradient-to-br from-green-50 to-emerald-50 border border-green-200 rounded-lg p-6">
<div class="w-12 h-12 bg-green-500 rounded-lg flex items-center justify-center mb-4">
<i class="fas fa-cubes text-white text-xl"></i>
</div>
<h4 class="font-semibold mb-3 text-slate-900">Multimodal Scaling</h4>
<p class="text-sm text-slate-700 mb-4">
Extend KnowRL principles to complex multimodal models processing text, images, audio, and video with appropriate verification mechanisms.
</p>
<div class="bg-white rounded p-3 border border-green-200">
<div class="text-xs text-slate-600 space-y-1">
<div>• Cross-modal verification</div>
<div>• Multimedia fact checking</div>
<div>• Holistic assessment</div>
</div>
</div>
</div>
</div>
</div>
<div class="mb-12">
<h3 class="font-canela text-2xl font-bold mb-8 text-slate-900">Enhancing Knowledge Verification</h3>
<div class="bg-white border border-slate-200 rounded-lg p-8">
<div class="grid md:grid-cols-2 gap-8">
<div>
<h4 class="font-semibold text-lg mb-4 text-slate-900">Verifier Improvements</h4>
<p class="text-slate-700 mb-4">
Research advanced verification models with higher accuracy and efficiency, exploring techniques for parallel verification and reduced computational overhead.
</p>
<div class="space-y-3">
<div class="flex items-center space-x-2">
<i class="fas fa-microchip text-blue-600 text-sm"></i>
<span class="text-sm text-slate-600">Advanced model architectures</span>
</div>
<div class="flex items-center space-x-2">
<i class="fas fa-tachometer-alt text-green-600 text-sm"></i>
<span class="text-sm text-slate-600">Efficiency optimization</span>
</div>
<div class="flex items-center space-x-2">
<i class="fas fa-parallel text-purple-600 text-sm"></i>
<span class="text-sm text-slate-600">Parallel processing</span>
</div>
</div>
</div>
<div>
<h4 class="font-semibold text-lg mb-4 text-slate-900">Specialized Knowledge Bases</h4>
<p class="text-slate-700 mb-4">
Develop domain-specific knowledge bases for medicine, law, finance, and other critical fields to improve verification accuracy and relevance.
</p>
<div class="bg-slate-50 rounded-lg p-4">
<div class="text-sm text-slate-600 space-y-2">
<div class="flex items-center space-x-2">
<i class="fas fa-book-medical text-blue-600 text-xs"></i>
<span>Medical textbooks & research</span>
</div>
<div class="flex items-center space-x-2">
<i class="fas fa-gavel text-green-600 text-xs"></i>
<span>Legal statutes & case law</span>
</div>
<div class="flex items-center space-x-2">
<i class="fas fa-chart-line text-purple-600 text-xs"></i>
<span>Financial regulations & data</span>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="mb-12">
<h3 class="font-canela text-2xl font-bold mb-8 text-slate-900">Long-Term Vision for Safe AI</h3>
<div class="bg-gradient-to-r from-slate-50 to-blue-50 border border-slate-200 rounded-lg p-8">
<h4 class="font-canela text-xl font-bold mb-6 text-slate-900">Comprehensive Safety Framework</h4>
<div class="grid md:grid-cols-2 gap-8">
<div>
<h5 class="font-semibold mb-4 text-slate-900">Rigorous Testing Protocols</h5>
<p class="text-slate-700 mb-4">
Integration of red-teaming and adversarial training to ensure models are robust against attacks and misuse scenarios.
</p>
<div class="space-y-2">
<div class="flex items-center space-x-2">
<i class="fas fa-bug text-red-600 text-sm"></i>
<span class="text-sm text-slate-600">Adversarial testing</span>
</div>
<div class="flex items-center space-x-2">
<i class="fas fa-users-cog text-orange-600 text-sm"></i>
<span class="text-sm text-slate-600">Red-team exercises</span>
</div>
<div class="flex items-center space-x-2">
<i class="fas fa-shield-alt text-blue-600 text-sm"></i>
<span class="text-sm text-slate-600">Robustness validation</span>
</div>
</div>
</div>
<div>
<h5 class="font-semibold mb-4 text-slate-900">Standardized Evaluation</h5>
<p class="text-slate-700 mb-4">
Development of comprehensive, standardized benchmarks for factual accuracy that resist gaming and provide meaningful progress measurement.
</p>
<div class="bg-white rounded-lg p-4 border border-slate-200">
<div class="text-sm text-slate-600 space-y-2">
<div>• Comprehensive error coverage</div>
<div>• Gaming resistance mechanisms</div>
<div>• Context-dependent evaluation</div>
<div>• Standardized metrics</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="highlight-box">
<h4 class="font-canela text-lg font-bold mb-3 text-slate-900">Research Impact and Vision</h4>
<p class="text-slate-700 mb-3">
KnowRL represents a significant step toward developing AI systems that are not only intelligent but also trustworthy, reliable, and worthy of human confidence. The framework's success in mitigating hallucinations while preserving reasoning capabilities opens promising avenues for creating the next generation of safe and beneficial AI systems.
</p>
<p class="text-slate-600 text-sm">
Future research building on these foundations will be essential for realizing the full potential of AI in high-stakes applications while maintaining the highest standards of safety and reliability.
</p>
</div>
</section>
<!-- Footer -->
<footer class="max-w-4xl mx-auto px-8 py-12 border-t border-slate-200">
<div class="text-center">
<p class="text-sm text-slate-600">
This comprehensive research report is based on the KnowRL framework as presented in
<a href="https://arxiv.org/html/2506.19807v3" class="citation-link">"KnowRL: Exploring Knowledgeable Reinforcement Learning for Factuality"</a>
and related literature in AI safety and hallucination mitigation.
</p>
<div class="mt-6 flex justify-center space-x-6 text-sm text-slate-500">
<span>AI Safety Research</span>
<span>•</span>
<span>Trustworthy AI Systems</span>
<span>•</span>
<span>Factual Reliability</span>
</div>
</div>
</footer>
</main>
<script>
// Mobile menu toggle
function toggleTOC() {
const toc = document.querySelector('.toc-fixed');
toc.classList.toggle('open');
}
// Smooth scrolling for anchor links
document.querySelectorAll('a[href^="#"]').forEach(anchor => {
anchor.addEventListener('click', function (e) {
e.preventDefault();
const target = document.querySelector(this.getAttribute('href'));
if (target) {
target.scrollIntoView({
behavior: 'smooth',
block: 'start'
});
}
// Close mobile TOC after click
const toc = document.querySelector('.toc-fixed');
if (toc.classList.contains('open')) {
toc.classList.remove('open');
}
});
});
// Add mobile menu button for small screens
if (window.innerWidth <= 1024) {
const menuButton = document.createElement('button');
menuButton.innerHTML = '<i class="fas fa-bars"></i>';
menuButton.className = 'fixed top-4 left-4 z-[1001] bg-white p-3 rounded-lg shadow-lg lg:hidden';
menuButton.onclick = toggleTOC;
document.body.appendChild(menuButton);
}
// Handle window resize to remove mobile menu state on large screens
window.addEventListener('resize', function() {
const toc = document.querySelector('.toc-fixed');
if (window.innerWidth > 1024) {
toc.classList.remove('open');
}
});
</script>
</body></html>
登录后可参与表态
讨论回复
0 条回复还没有人回复,快来发表你的看法吧!