<!DOCTYPE html><html lang="en"><head>
<meta charset="UTF-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<title>Nested Learning: A New Paradigm for Continual and Self-Improving AI</title>
<script src="https://cdn.tailwindcss.com"></script>
<script src="https://kit.fontawesome.com/your-kit-id.js" crossorigin="anonymous"></script>
<link href="https://fonts.googleapis.com/css2?family=Crimson+Text:ital,wght@0,400;0,600;1,400&family=Inter:wght@300;400;500;600;700&display=swap" rel="stylesheet"/>
<script>
tailwind.config = {
theme: {
extend: {
fontFamily: {
'serif': ['Crimson Text', 'serif'],
'sans': ['Inter', 'sans-serif'],
},
colors: {
'primary': '#1e40af',
'secondary': '#64748b',
'accent': '#f59e0b',
'neutral': '#374151',
'base': '#f8fafc',
}
}
}
}
</script>
<style>
.hero-gradient {
background: linear-gradient(135deg, rgba(30, 64, 175, 0.1) 0%, rgba(245, 158, 11, 0.05) 100%);
}
.text-shadow {
text-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.glass {
backdrop-filter: blur(10px);
background: rgba(255, 255, 255, 0.9);
}
.toc-fixed {
position: fixed;
top: 0;
left: 0;
width: 280px;
height: 100vh;
z-index: 50;
overflow-y: auto;
border-right: 1px solid #e5e7eb;
}
.main-content {
margin-left: 280px;
min-height: 100vh;
}
<span class="mention-invalid">@media</span> (max-width: 1024px) {
.toc-fixed {
transform: translateX(-100%);
transition: transform 0.3s ease;
}
.toc-fixed.mobile-open {
transform: translateX(0);
}
.main-content {
margin-left: 0;
}
}
.smooth-scroll {
scroll-behavior: smooth;
}
.section-divider {
background: linear-gradient(90deg, transparent 0%, #e5e7eb 50%, transparent 100%);
height: 1px;
margin: 3rem 0;
}
</style>
<base target="_blank">
</head>
<body class="bg-base font-sans text-neutral leading-relaxed smooth-scroll overflow-x-hidden">
<!-- Mobile TOC Toggle -->
<button id="toc-toggle" class="lg:hidden fixed top-4 left-4 z-50 p-2 bg-white rounded-lg shadow-lg">
<i class="fas fa-bars text-primary"></i>
</button>
<!-- Table of Contents -->
<nav id="toc" class="toc-fixed glass p-6">
<div class="mb-8">
<h2 class="font-serif text-xl font-semibold text-primary mb-2">Contents</h2>
<div class="w-12 h-0.5 bg-accent"></div>
</div>
<ul class="space-y-3 text-sm">
<li>
<a href="#introduction" class="block py-1 text-secondary hover:text-primary transition-colors">1. The NL Paradigm</a>
</li>
<li>
<a href="#deep-optimizers" class="block py-1 text-secondary hover:text-primary transition-colors">2. Deep Optimizers</a>
</li>
<li>
<a href="#hope-architecture" class="block py-1 text-secondary hover:text-primary transition-colors">3. HOPE Architecture</a>
</li>
<li>
<a href="#empirical-validation" class="block py-1 text-secondary hover:text-primary transition-colors">4. Empirical Validation</a>
</li>
<li>
<a href="#future-impact" class="block py-1 text-secondary hover:text-primary transition-colors">5. Future Impact</a>
</li>
<li>
<a href="#references" class="block py-1 text-secondary hover:text-primary transition-colors">References</a>
</li>
</ul>
</nav>
<!-- Main Content -->
<main class="main-content" id="main-content">
<!-- Introduction Section -->
<section id="introduction" class="py-16 px-8 bg-white">
<div class="container mx-auto max-w-4xl">
<div class="mb-12">
<h2 class="font-serif text-4xl font-bold text-neutral mb-4">The Nested Learning Paradigm</h2>
<div class="w-16 h-1 bg-accent mb-8"></div>
<p class="text-xl text-secondary leading-relaxed font-light">
A foundational shift that dissolves the traditional distinction between model architecture and optimization algorithms, revealing models as dynamic systems of nested, multi-level optimization problems.
</p>
</div>
<div class="grid grid-cols-1 lg:grid-cols-3 gap-8 mb-12">
<div class="bg-gray-50 p-6 rounded-lg border-l-4 border-primary">
<h3 class="font-serif text-xl font-semibold mb-3 text-neutral">Unified Architecture</h3>
<p class="text-secondary text-sm leading-relaxed">
NL treats model architecture and optimization as a single, integrated system where components operate at different timescales.
</p>
</div>
<div class="bg-gray-50 p-6 rounded-lg border-l-4 border-accent">
<h3 class="font-serif text-xl font-semibold mb-3 text-neutral">Context Flow</h3>
<p class="text-secondary text-sm leading-relaxed">
Models learn by compressing internal context flows, turning each optimization level into an associative memory module.
</p>
</div>
<div class="bg-gray-50 p-6 rounded-lg border-l-4 border-secondary">
<h3 class="font-serif text-xl font-semibold mb-3 text-neutral">Multi-Timescale</h3>
<p class="text-secondary text-sm leading-relaxed">
Neuroscientifically inspired approach with different components updating at varying frequencies for optimal learning.
</p>
</div>
</div>
<div class="prose prose-lg max-w-none">
<h3 class="font-serif text-2xl font-semibold mb-4 text-neutral">Core Philosophy</h3>
<p class="mb-6">
The central tenet of Nested Learning is the unification of model architecture and optimization algorithms, which have traditionally been treated as distinct entities in machine learning <a href="https://zhuanlan.zhihu.com/p/1970478764581451372" class="text-primary hover:underline" target="_blank">[1]</a>
<a href="https://finance.sina.com.cn/stock/t/2025-11-10/doc-infwwmez1703691.shtml" class="text-primary hover:underline" target="_blank">[2]</a>. This unification is achieved by re-conceptualizing a neural network not as a static structure of parameters, but as a collection of interconnected optimization processes, each operating at its own frequency and with its own independent "context flow" <a href="https://abehrouz.github.io/files/NL.pdf" class="text-primary hover:underline" target="_blank">[3]</a>.
</p>
<h3 class="font-serif text-2xl font-semibold mb-4 text-neutral mt-8">Explaining In-Context Learning</h3>
<p class="mb-6">
The Nested Learning framework offers a compelling explanation for the phenomenon of <strong>in-context learning (ICL)</strong>, where large language models can learn to perform new tasks based solely on a few examples provided in the input prompt, without any explicit gradient-based training <a href="https://abehrouz.github.io/files/NL.pdf" class="text-primary hover:underline" target="_blank">[3]</a>. According to NL, ICL is not a magical emergent property but a natural consequence of the model's nested optimization structure.
</p>
</div>
</div>
</section>
<div class="section-divider"></div>
<!-- Deep Optimizers Section -->
<section id="deep-optimizers" class="py-16 px-8 bg-gray-50">
<div class="container mx-auto max-w-4xl">
<div class="mb-12">
<h2 class="font-serif text-4xl font-bold text-neutral mb-4">Deep Optimizers: A New Class of Learning Algorithms</h2>
<div class="w-16 h-1 bg-accent mb-8"></div>
<p class="text-xl text-secondary leading-relaxed font-light">
Reimagining standard optimizers like Adam and SGD with Momentum as associative memory modules that learn to compress gradients, enabling more powerful and adaptive optimization.
</p>
</div>
<div class="grid grid-cols-1 lg:grid-cols-2 gap-8 mb-12">
<div class="space-y-6">
<div class="bg-white p-6 rounded-lg shadow-sm">
<h3 class="font-serif text-xl font-semibold mb-4 text-neutral">Traditional Optimizers</h3>
<div class="space-y-3 text-sm">
<div class="flex items-center space-x-3">
<div class="w-3 h-3 bg-red-400 rounded-full"></div>
<span class="text-secondary">Adam - Moment-based updates</span>
</div>
<div class="flex items-center space-x-3">
<div class="w-3 h-3 bg-orange-400 rounded-full"></div>
<span class="text-secondary">SGD+Momentum - Gradient smoothing</span>
</div>
<div class="flex items-center space-x-3">
<div class="w-3 h-3 bg-yellow-400 rounded-full"></div>
<span class="text-secondary">RMSprop - Adaptive learning rates</span>
</div>
</div>
</div>
<div class="bg-primary/5 p-6 rounded-lg border border-primary/20">
<h3 class="font-serif text-xl font-semibold mb-4 text-primary">Deep Optimizers</h3>
<ul class="space-y-2 text-sm text-secondary">
<li class="flex items-center space-x-2">
<i class="fas fa-check text-primary"></i>
<span>Learnable memory modules</span>
</li>
<li class="flex items-center space-x-2">
<i class="fas fa-check text-primary"></i>
<span>Gradient compression systems</span>
</li>
<li class="flex items-center space-x-2">
<i class="fas fa-check text-primary"></i>
<span>Frequency-aware updates</span>
</li>
</ul>
</div>
</div>
<div class="bg-white p-6 rounded-lg shadow-sm">
<img src="https://kimi-web-img.moonshot.cn/img/pub.mdpi-res.com/8186eb3b4b868c2c7afeb72179f0f6e74c3e9d91.png" alt="Abstract representation of nested optimization levels" class="w-full h-48 object-cover rounded-lg mb-4" size="medium" aspect="wide" query="abstract nested optimization levels" referrerpolicy="no-referrer" data-modified="1" data-score="0.00"/>
<p class="text-sm text-secondary italic">
Deep Optimizers transform traditional gradient-based updates into associative memory modules that learn to compress and optimize gradient information across multiple timescales.
</p>
</div>
</div>
<div class="prose prose-lg max-w-none">
<h3 class="font-serif text-2xl font-semibold mb-4 text-neutral">Reimagining Optimization</h3>
<p class="mb-6">
The core idea behind Deep Optimizers is to view the optimization process through the lens of associative memory <a href="https://abehrouz.github.io/files/NL.pdf" class="text-primary hover:underline" target="_blank">[4]</a>. In this framework, the optimizer is not just a set of rules for updating parameters; it is a memory system that stores and retrieves information about the gradients it has seen in the past. When a new gradient is received, the optimizer uses its memory to compute an update that is informed by the history of previous gradients.
</p>
<h3 class="font-serif text-2xl font-semibold mb-4 text-neutral mt-8">Deep Momentum Gradient Descent</h3>
<p class="mb-6">
One of the proposed optimizers is <strong>Deep Momentum Gradient Descent</strong>, which uses an MLP to store and process the gradient history <a href="https://www.xugj520.cn/archives/nested-learning-crack-the-code-of-ai.html" class="text-primary hover:underline" target="_blank">[5]</a>. Instead of using a simple exponential moving average to compute the momentum term, this optimizer uses an MLP to learn a more complex function of the past gradients. This allows the optimizer to learn more sophisticated patterns in the gradient sequence, such as periodicities or long-range dependencies <a href="https://rewire.it/blog/nested-learning-how-your-neural-network-already-learns-at-multiple-timescales/" class="text-primary hover:underline" target="_blank">[6]</a>.
</p>
</div>
</div>
</section>
<div class="section-divider"></div>
<!-- HOPE Architecture Section -->
<section id="hope-architecture" class="py-16 px-8 bg-white">
<div class="container mx-auto max-w-4xl">
<div class="mb-12">
<h2 class="font-serif text-4xl font-bold text-neutral mb-4">The HOPE Architecture: A Self-Modifying System</h2>
<div class="w-16 h-1 bg-accent mb-8"></div>
<p class="text-xl text-secondary leading-relaxed font-light">
HOPE (Hierarchical Optimization with Parameter Evolution) demonstrates the practical potential of Nested Learning through a self-modifying sequence model that learns to adapt its own learning algorithm.
</p>
</div>
<!-- Architecture Components -->
<div class="grid grid-cols-1 md:grid-cols-3 gap-6 mb-12">
<div class="bg-gradient-to-br from-blue-50 to-indigo-50 p-6 rounded-lg">
<div class="w-12 h-12 bg-primary rounded-lg flex items-center justify-center mb-4">
<i class="fas fa-cogs text-white text-xl"></i>
</div>
<h3 class="font-serif text-lg font-semibold mb-3 text-neutral">Self-Modifying</h3>
<p class="text-sm text-secondary">Learns to predict optimal parameter updates based on current context and loss function.</p>
</div>
<div class="bg-gradient-to-br from-amber-50 to-orange-50 p-6 rounded-lg">
<div class="w-12 h-12 bg-accent rounded-lg flex items-center justify-center mb-4">
<i class="fas fa-layer-group text-white text-xl"></i>
</div>
<h3 class="font-serif text-lg font-semibold mb-3 text-neutral">Multi-Timescale</h3>
<p class="text-sm text-secondary">Continuum Memory System manages information across different temporal scales.</p>
</div>
<div class="bg-gradient-to-br from-green-50 to-emerald-50 p-6 rounded-lg">
<div class="w-12 h-12 bg-green-600 rounded-lg flex items-center justify-center mb-4">
<i class="fas fa-infinity text-white text-xl"></i>
</div>
<h3 class="font-serif text-lg font-semibold mb-3 text-neutral">Unbounded Levels</h3>
<p class="text-sm text-secondary">Achieves infinite nested learning loops for recursive self-improvement.</p>
</div>
</div>
<div class="prose prose-lg max-w-none">
<h3 class="font-serif text-2xl font-semibold mb-4 text-neutral">Continuum Memory System</h3>
<p class="mb-6">
The Continuum Memory System (CMS) is another key innovation in the HOPE architecture <a href="https://abehrouz.github.io/files/NL.pdf" class="text-primary hover:underline" target="_blank">[4]</a>. It is a new formulation for memory systems that generalizes the traditional view of long-term and short-term memory. Instead of having a fixed number of memory stores, CMS provides a continuous spectrum of memory modules, each with its own update frequency and retention characteristics <a href="https://rewire.it/blog/nested-learning-how-your-neural-network-already-learns-at-multiple-timescales/" class="text-primary hover:underline" target="_blank">[6]</a>.
</p>
<h3 class="font-serif text-2xl font-semibold mb-4 text-neutral mt-8">Self-Referential Optimization</h3>
<p class="mb-6">
Self-referential optimization is a key concept in the HOPE architecture and a direct consequence of the Nested Learning paradigm <a href="https://www.xugj520.cn/archives/nested-learning-crack-the-code-of-ai.html" class="text-primary hover:underline" target="_blank">[5]</a>. It refers to the ability of the model to modify its own learning rules during inference, allowing it to adapt to new information and to improve its performance over time. By enabling the model to learn how to learn, self-referential optimization opens up the possibility of creating truly intelligent systems that can continually evolve and improve.
</p>
</div>
</div>
</section>
<div class="section-divider"></div>
<!-- Empirical Validation Section -->
<section id="empirical-validation" class="py-16 px-8 bg-gray-50">
<div class="container mx-auto max-w-4xl">
<div class="mb-12">
<h2 class="font-serif text-4xl font-bold text-neutral mb-4">Empirical Validation and Performance</h2>
<div class="w-16 h-1 bg-accent mb-8"></div>
<p class="text-xl text-secondary leading-relaxed font-light">
Comprehensive experimental results demonstrate HOPE's superior performance across language modeling, continual learning, and long-context reasoning tasks.
</p>
</div>
<!-- Performance Table -->
<div class="bg-white rounded-lg shadow-sm overflow-hidden mb-12">
<div class="bg-primary text-white p-4">
<h3 class="font-serif text-lg font-semibold">Performance Summary</h3>
</div>
<div class="overflow-x-auto">
<table class="w-full">
<thead class="bg-gray-50">
<tr>
<th class="px-6 py-3 text-left text-xs font-medium text-secondary uppercase tracking-wider">Task Category</th>
<th class="px-6 py-3 text-left text-xs font-medium text-secondary uppercase tracking-wider">Benchmark</th>
<th class="px-6 py-3 text-left text-xs font-medium text-secondary uppercase tracking-wider">Key Finding</th>
<th class="px-6 py-3 text-left text-xs font-medium text-secondary uppercase tracking-wider">Source</th>
</tr>
</thead>
<tbody class="divide-y divide-gray-200 text-sm">
<tr>
<td class="px-6 py-4 font-medium text-neutral">Language Modeling</td>
<td class="px-6 py-4 text-secondary">WikiText-103, LAMBADA</td>
<td class="px-6 py-4 text-neutral">Lower perplexity than Transformers and recurrent models</td>
<td class="px-6 py-4">
<a href="https://www.xugj520.cn/archives/differences-between-vanilla-ml-nested-learning.html" class="text-primary hover:underline" target="_blank">[7]</a>
</td>
</tr>
<tr class="bg-gray-50">
<td class="px-6 py-4 font-medium text-neutral">Long-Context Reasoning</td>
<td class="px-6 py-4 text-secondary">"Hunting" task, Babi tasks</td>
<td class="px-6 py-4 text-neutral">Superior performance in long-range dependencies</td>
<td class="px-6 py-4">
<a href="https://www.xugj520.cn/archives/differences-between-vanilla-ml-nested-learning.html" class="text-primary hover:underline" target="_blank">[7]</a>
</td>
</tr>
<tr>
<td class="px-6 py-4 font-medium text-neutral">Continual Learning</td>
<td class="px-6 py-4 text-secondary">Permuted MNIST, Split CIFAR-100</td>
<td class="px-6 py-4 text-neutral">Minimal catastrophic forgetting across task sequences</td>
<td class="px-6 py-4">
<a href="https://www.xugj520.cn/archives/differences-between-vanilla-ml-nested-learning.html" class="text-primary hover:underline" target="_blank">[7]</a>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="grid grid-cols-1 lg:grid-cols-2 gap-8 mb-12">
<div class="bg-white p-6 rounded-lg shadow-sm">
<h3 class="font-serif text-xl font-semibold mb-4 text-neutral">Key Achievements</h3>
<ul class="space-y-3">
<li class="flex items-start space-x-3">
<div class="w-2 h-2 bg-accent rounded-full mt-2"></div>
<div>
<div class="font-medium text-neutral">Superior Language Understanding</div>
<div class="text-sm text-secondary">Lower perplexity than state-of-the-art models</div>
</div>
</li>
<li class="flex items-start space-x-3">
<div class="w-2 h-2 bg-accent rounded-full mt-2"></div>
<div>
<div class="font-medium text-neutral">Enhanced Memory Management</div>
<div class="text-sm text-secondary">Better long-context reasoning capabilities</div>
</div>
</li>
<li class="flex items-start space-x-3">
<div class="w-2 h-2 bg-accent rounded-full mt-2"></div>
<div>
<div class="font-medium text-neutral">Continual Learning Breakthrough</div>
<div class="text-sm text-secondary">Minimal catastrophic forgetting observed</div>
</div>
</li>
</ul>
</div>
<div class="bg-white p-6 rounded-lg shadow-sm">
<img src="https://kimi-web-img.moonshot.cn/img/media.springernature.com/fe579ad9f204bcdc7f9be924d10c12cbdeed77e3.png" alt="Abstract representation of AI memory systems" class="w-full h-48 object-cover rounded-lg mb-4" size="medium" aspect="wide" query="AI memory system" referrerpolicy="no-referrer" data-modified="1" data-score="0.00"/>
<p class="text-sm text-secondary italic">
HOPE's Continuum Memory System enables fine-grained control over memory retention and forgetting, crucial for continual learning applications.
</p>
</div>
</div>
<div class="prose prose-lg max-w-none">
<h3 class="font-serif text-2xl font-semibold mb-4 text-neutral">Breakthrough in Continual Learning</h3>
<p class="mb-6">
The results on continual learning benchmarks show that HOPE is able to achieve a breakthrough in performance, with minimal catastrophic forgetting. This is a major contribution of the paper, as it addresses one of the most persistent challenges in artificial intelligence <a href="https://www.executeai.software/the-architecture-of-the-mind-googles-nested-learning-and-the-global-race-for-continual-intelligence/" class="text-primary hover:underline" target="_blank">[8]</a>. The ability of HOPE to learn continuously without forgetting previously acquired knowledge is a direct result of its nested optimization structure and its Continuum Memory System.
</p>
</div>
</div>
</section>
<div class="section-divider"></div>
<!-- Future Impact Section -->
<section id="future-impact" class="py-16 px-8 bg-white">
<div class="container mx-auto max-w-4xl">
<div class="mb-12">
<h2 class="font-serif text-4xl font-bold text-neutral mb-4">Potential Impact and Future Research</h2>
<div class="w-16 h-1 bg-accent mb-8"></div>
<p class="text-xl text-secondary leading-relaxed font-light">
Nested Learning offers a path towards addressing fundamental AI challenges, with implications for personalized AI, recommender systems, lifelong learning agents, and the development of Artificial General Intelligence.
</p>
</div>
<!-- Impact Areas -->
<div class="grid grid-cols-1 md:grid-cols-2 gap-8 mb-12">
<div class="bg-blue-50 p-6 rounded-lg">
<h3 class="font-serif text-xl font-semibold mb-4 text-primary">Fundamental AI Challenges</h3>
<ul class="space-y-3 text-sm">
<li class="flex items-start space-x-2">
<i class="fas fa-shield-alt text-primary mt-1"></i>
<span class="text-secondary">Overcoming catastrophic forgetting in neural networks</span>
</li>
<li class="flex items-start space-x-2">
<i class="fas fa-brain text-primary mt-1"></i>
<span class="text-secondary">Path towards more robust and adaptive AI systems</span>
</li>
<li class="flex items-start space-x-2">
<i class="fas fa-rocket text-primary mt-1"></i>
<span class="text-secondary">Implications for Artificial General Intelligence</span>
</li>
</ul>
</div>
<div class="bg-amber-50 p-6 rounded-lg">
<h3 class="font-serif text-xl font-semibold mb-4 text-accent">Applications & Extensions</h3>
<ul class="space-y-3 text-sm">
<li class="flex items-start space-x-2">
<i class="fas fa-user-friends text-accent mt-1"></i>
<span class="text-secondary">Personalized AI companions and adaptive interfaces</span>
</li>
<li class="flex items-start space-x-2">
<i class="fas fa-chart-line text-accent mt-1"></i>
<span class="text-secondary">Advanced recommender systems with real-time personalization</span>
</li>
<li class="flex items-start space-x-2">
<i class="fas fa-robot text-accent mt-1"></i>
<span class="text-secondary">Lifelong learning agents and robotics</span>
</li>
</ul>
</div>
</div>
<!-- Future Research Directions -->
<div class="bg-gray-50 p-8 rounded-lg mb-12">
<h3 class="font-serif text-2xl font-semibold mb-6 text-neutral">Future Research Directions</h3>
<div class="grid grid-cols-1 lg:grid-cols-3 gap-6">
<div class="text-center">
<div class="w-16 h-16 bg-primary rounded-full flex items-center justify-center mx-auto mb-4">
<i class="fas fa-expand-arrows-alt text-white text-xl"></i>
</div>
<h4 class="font-serif text-lg font-semibold mb-2 text-neutral">Scaling HOPE</h4>
<p class="text-sm text-secondary">Scaling to larger and more complex models while managing computational costs</p>
</div>
<div class="text-center">
<div class="w-16 h-16 bg-accent rounded-full flex items-center justify-center mx-auto mb-4">
<i class="fas fa-calculator text-white text-xl"></i>
</div>
<h4 class="font-serif text-lg font-semibold mb-2 text-neutral">Theoretical Analysis</h4>
<p class="text-sm text-secondary">Deeper mathematical analysis of Nested Learning dynamics and convergence properties</p>
</div>
<div class="text-center">
<div class="w-16 h-16 bg-green-600 rounded-full flex items-center justify-center mx-auto mb-4">
<i class="fas fa-puzzle-piece text-white text-xl"></i>
</div>
<h4 class="font-serif text-lg font-semibold mb-2 text-neutral">Integration</h4>
<p class="text-sm text-secondary">Integration with other AI paradigms like Retrieval-Augmented Generation</p>
</div>
</div>
</div>
<div class="prose prose-lg max-w-none">
<h3 class="font-serif text-2xl font-semibold mb-4 text-neutral">Open Questions</h3>
<p class="mb-6">
The Nested Learning paper also raises a number of open questions and outlines several directions for future work. These include scaling the HOPE architecture to larger and more complex models, conducting a more thorough theoretical analysis of the Nested Learning dynamics, and integrating the framework with other AI paradigms <a href="https://medium.com/dataai/nested-learning-for-recommender-systems-bringing-fast-and-slow-learning-to-personalization-eef38209ace5" class="text-primary hover:underline" target="_blank">[9]</a>.
</p>
<blockquote class="border-l-4 border-accent bg-amber-50 p-6 my-8 italic">
<p class="text-lg text-neutral mb-2">
"The Nested Learning paradigm could have important implications for the development of Artificial General Intelligence, providing a framework for designing models that can learn and adapt in a more human-like manner."
</p>
<footer class="text-sm text-secondary not-italic">
— Research Implications from Nested Learning Paper
</footer>
</blockquote>
</div>
</div>
</section>
<!-- References Section -->
<section id="references" class="py-16 px-8 bg-gray-50">
<div class="container mx-auto max-w-4xl">
<div class="mb-12">
<h2 class="font-serif text-4xl font-bold text-neutral mb-4">References</h2>
<div class="w-16 h-1 bg-accent mb-8"></div>
</div>
<div class="space-y-4 text-sm">
<div class="bg-white p-4 rounded-lg border-l-4 border-primary">
<div class="font-medium text-neutral mb-1">[1] Nested Learning Paradigm Overview</div>
<a href="https://zhuanlan.zhihu.com/p/1970478764581451372" class="text-primary hover:underline" target="_blank">https://zhuanlan.zhihu.com/p/1970478764581451372</a>
</div>
<div class="bg-white p-4 rounded-lg border-l-4 border-primary">
<div class="font-medium text-neutral mb-1">[2] Nested Learning Architecture</div>
<a href="https://finance.sina.com.cn/stock/t/2025-11-10/doc-infwwmez1703691.shtml" class="text-primary hover:underline" target="_blank">https://finance.sina.com.cn/stock/t/2025-11-10/doc-infwwmez1703691.shtml</a>
</div>
<div class="bg-white p-4 rounded-lg border-l-4 border-primary">
<div class="font-medium text-neutral mb-1">[3] Nested Learning Research Paper</div>
<a href="https://abehrouz.github.io/files/NL.pdf" class="text-primary hover:underline" target="_blank">https://abehrouz.github.io/files/NL.pdf</a>
</div>
<div class="bg-white p-4 rounded-lg border-l-4 border-primary">
<div class="font-medium text-neutral mb-1">[4] Deep Optimizers and HOPE Architecture</div>
<a href="https://abehrouz.github.io/files/NL.pdf" class="text-primary hover:underline" target="_blank">https://abehrouz.github.io/files/NL.pdf</a>
</div>
<div class="bg-white p-4 rounded-lg border-l-4 border-primary">
<div class="font-medium text-neutral mb-1">[5] Nested Learning Analysis</div>
<a href="https://www.xugj520.cn/archives/nested-learning-crack-the-code-of-ai.html" class="text-primary hover:underline" target="_blank">https://www.xugj520.cn/archives/nested-learning-crack-the-code-of-ai.html</a>
</div>
<div class="bg-white p-4 rounded-lg border-l-4 border-primary">
<div class="font-medium text-neutral mb-1">[6] Multi-Timescale Learning</div>
<a href="https://rewire.it/blog/nested-learning-how-your-neural-network-already-learns-at-multiple-timescales/" class="text-primary hover:underline" target="_blank">https://rewire.it/blog/nested-learning-how-your-neural-network-already-learns-at-multiple-timescales/</a>
</div>
<div class="bg-white p-4 rounded-lg border-l-4 border-primary">
<div class="font-medium text-neutral mb-1">[7] ML vs Nested Learning Comparison</div>
<a href="https://www.xugj520.cn/archives/differences-between-vanilla-ml-nested-learning.html" class="text-primary hover:underline" target="_blank">https://www.xugj520.cn/archives/differences-between-vanilla-ml-nested-learning.html</a>
</div>
<div class="bg-white p-4 rounded-lg border-l-4 border-primary">
<div class="font-medium text-neutral mb-1">[8] Architecture of the Mind</div>
<a href="https://www.executeai.software/the-architecture-of-the-mind-googles-nested-learning-and-the-global-race-for-continual-intelligence/" class="text-primary hover:underline" target="_blank">https://www.executeai.software/the-architecture-of-the-mind-googles-nested-learning-and-the-global-race-for-continual-intelligence/</a>
</div>
<div class="bg-white p-4 rounded-lg border-l-4 border-primary">
<div class="font-medium text-neutral mb-1">[9] Nested Learning for Recommender Systems</div>
<a href="https://medium.com/dataai/nested-learning-for-recommender-systems-bringing-fast-and-slow-learning-to-personalization-eef38209ace5" class="text-primary hover:underline" target="_blank">https://medium.com/dataai/nested-learning-for-recommender-systems-bringing-fast-and-slow-learning-to-personalization-eef38209ace5</a>
</div>
</div>
</div>
</section>
<!-- Footer -->
<footer class="bg-neutral text-white py-8 px-8">
<div class="container mx-auto max-w-4xl text-center">
<p class="text-sm text-gray-400">
This analysis is based on the research paper "Nested Learning: The Illusion of Deep Learning Architectures" by Google Research.
</p>
</div>
</footer>
</main>
<script>
// Mobile TOC Toggle
document.getElementById('toc-toggle').addEventListener('click', function() {
const toc = document.getElementById('toc');
toc.classList.toggle('mobile-open');
});
// Close TOC when clicking outside on mobile
document.addEventListener('click', function(event) {
const toc = document.getElementById('toc');
const toggle = document.getElementById('toc-toggle');
const mainContent = document.getElementById('main-content');
// Only close if TOC is open (mobile view) and click is outside
if (toc.classList.contains('mobile-open') &&
!toc.contains(event.target) &&
event.target !== toggle &&
!toggle.contains(event.target)) {
toc.classList.remove('mobile-open');
}
});
// Remove mobile-open class when resizing to desktop
window.addEventListener('resize', function() {
const toc = document.getElementById('toc');
if (window.innerWidth >= 1024) {
toc.classList.remove('mobile-open');
}
});
// Smooth scrolling for anchor links
document.querySelectorAll('a[href^="#"]').forEach(anchor => {
anchor.addEventListener('click', function (e) {
e.preventDefault();
const target = document.querySelector(this.getAttribute('href'));
if (target) {
target.scrollIntoView({
behavior: 'smooth',
block: 'start'
});
// Close mobile TOC after clicking
document.getElementById('toc').classList.remove('mobile-open');
}
});
});
// Highlight active section in TOC
const sections = document.querySelectorAll('section[id]');
const tocLinks = document.querySelectorAll('#toc a[href^="#"]');
function updateActiveSection() {
let current = '';
sections.forEach(section => {
const rect = section.getBoundingClientRect();
if (rect.top <= 100) {
current = section.getAttribute('id');
}
});
tocLinks.forEach(link => {
link.classList.remove('text-primary', 'font-medium');
link.classList.add('text-secondary');
if (link.getAttribute('href') === `#${current}`) {
link.classList.remove('text-secondary');
link.classList.add('text-primary', 'font-medium');
}
});
}
window.addEventListener('scroll', updateActiveSection);
updateActiveSection(); // Initial call
</script>
</body></html>
登录后可参与表态
讨论回复
1 条回复
✨步子哥 (steper)
#1
11-27 05:20
登录后可参与表态