<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>ELLA Framework Poster</title>
<style>
<span class="mention-invalid">@import</span> url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;800&family=JetBrains+Mono:wght@400;700&display=swap');
* {
box-sizing: border-box;
margin: 0;
padding: 0;
}
body {
width: 720px;
height: 960px;
background: #050511;
font-family: 'Inter', sans-serif;
color: #e2e8f0;
overflow: hidden;
display: flex;
flex-direction: column;
position: relative;
}
/* Background Effects */
.bg-gradient {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background: radial-gradient(circle at 10% 20%, rgba(76, 29, 149, 0.25) 0%, transparent 40%),
radial-gradient(circle at 90% 80%, rgba(6, 182, 212, 0.15) 0%, transparent 40%);
z-index: 0;
}
.grid-lines {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-image: linear-gradient(rgba(255, 255, 255, 0.03) 1px, transparent 1px),
linear-gradient(90deg, rgba(255, 255, 255, 0.03) 1px, transparent 1px);
background-size: 40px 40px;
z-index: 1;
}
/* Content Container */
.container {
position: relative;
z-index: 10;
padding: 40px;
height: 100%;
display: flex;
flex-direction: column;
gap: 24px;
}
/* Header */
header {
display: flex;
justify-content: space-between;
align-items: flex-start;
border-bottom: 1px solid rgba(255, 255, 255, 0.1);
padding-bottom: 20px;
}
.title-block h1 {
font-size: 64px;
font-weight: 800;
line-height: 1;
background: linear-gradient(135deg, #fff 0%, #94a3b8 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
letter-spacing: -2px;
margin-bottom: 8px;
}
.title-block p {
font-size: 18px;
color: #64748b;
font-weight: 400;
text-transform: uppercase;
letter-spacing: 2px;
}
.badge {
background: rgba(6, 182, 212, 0.1);
border: 1px solid rgba(6, 182, 212, 0.3);
color: #22d3ee;
padding: 6px 12px;
border-radius: 20px;
font-size: 12px;
font-weight: 600;
text-transform: uppercase;
}
/* Main Grid */
.grid-layout {
display: grid;
grid-template-columns: 1fr 1fr;
grid-template-rows: auto auto 1fr;
gap: 20px;
flex-grow: 1;
}
.full-width {
grid-column: 1 / -1;
}
/* Cards */
.card {
background: rgba(255, 255, 255, 0.03);
border: 1px solid rgba(255, 255, 255, 0.08);
border-radius: 16px;
padding: 20px;
backdrop-filter: blur(10px);
display: flex;
flex-direction: column;
gap: 12px;
transition: transform 0.3s ease;
}
.card-title {
font-size: 16px;
font-weight: 600;
color: #a5b4fc;
display: flex;
align-items: center;
gap: 8px;
}
.card-title::before {
content: '';
display: block;
width: 4px;
height: 16px;
background: #6366f1;
border-radius: 2px;
}
.card-content {
font-size: 14px;
line-height: 1.6;
color: #cbd5e1;
}
/* Highlighted Text */
.highlight {
color: #fff;
font-weight: 600;
}
/* Math Section */
.math-box {
background: #0f172a;
border-radius: 8px;
padding: 15px;
font-family: 'JetBrains Mono', monospace;
color: #4ade80;
font-size: 13px;
text-align: center;
border: 1px dashed #334155;
margin-top: 5px;
}
/* Visual Representation of Subspaces */
.subspace-visual {
display: flex;
justify-content: center;
align-items: center;
gap: 10px;
margin-top: 10px;
}
.circle {
border-radius: 50%;
display: flex;
align-items: center;
justify-content: center;
font-size: 10px;
font-weight: bold;
backdrop-filter: blur(5px);
border: 1px solid rgba(255,255,255,0.2);
}
.circle-past {
width: 60px;
height: 60px;
background: rgba(99, 102, 241, 0.2);
border-color: #6366f1;
z-index: 1;
}
.circle-new {
width: 50px;
height: 50px;
background: rgba(6, 182, 212, 0.2);
border-color: #22d3ee;
margin-left: -15px;
z-index: 2;
}
.visual-label {
text-align: center;
font-size: 11px;
color: #64748b;
margin-top: 5px;
}
/* Results Section */
.stats-container {
display: flex;
justify-content: space-around;
align-items: center;
margin-top: 10px;
}
.stat-item {
text-align: center;
}
.stat-value {
font-size: 36px;
font-weight: 800;
background: linear-gradient(to bottom, #fff, #94a3b8);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.stat-desc {
font-size: 12px;
color: #64748b;
text-transform: uppercase;
margin-top: 4px;
}
.stat-plus {
font-size: 24px;
color: #22d3ee;
vertical-align: super;
}
/* Footer */
.footer {
margin-top: auto;
border-top: 1px solid rgba(255, 255, 255, 0.1);
padding-top: 15px;
display: flex;
justify-content: space-between;
align-items: flex-end;
font-size: 10px;
color: #475569;
}
.source-link {
color: #64748b;
text-decoration: none;
}
.disclaimer {
max-width: 70%;
}
/* Key Features List */
.features {
list-style: none;
display: grid;
grid-template-columns: 1fr 1fr;
gap: 10px;
}
.features li {
display: flex;
align-items: center;
gap: 8px;
font-size: 12px;
color: #cbd5e1;
}
.features li::before {
content: '✓';
color: #22d3ee;
font-weight: bold;
}
</style>
</head>
<body>
<div class="bg-gradient"></div>
<div class="grid-lines"></div>
<div class="container">
<header>
<div class="title-block">
<h1>ELLA</h1>
<p>Efficient Lifelong Learning for LLMs</p>
</div>
<div class="badge">SOTA 2026</div>
</header>
<div class="grid-layout">
<!-- Intro / Problem -->
<div class="card full-width">
<div class="card-title">核心问题:灾难性遗忘</div>
<div class="card-content">
大语言模型(LLM)在顺序学习新任务时,容易覆盖旧知识。传统的<span class="highlight">正交更新</span>方法限制过于严苛,限制了知识的正向迁移。
<br><br>
<strong>ELLA 突破:</strong> 引入<span class="highlight" style="color:#22d3ee">选择性子空间去相关</span>策略,通过轻量级正则化惩罚与旧任务关键方向的对齐,同时复用通用低能量子空间。
</div>
</div>
<!-- Innovation -->
<div class="card" style="grid-row: span 2;">
<div class="card-title">技术原理</div>
<div class="card-content">
<p>ELLA 通过各向异性收缩算子(Anisotropic Shrinkage Operator)限制干扰,实现稳定性与可塑性的平衡。</p>
<div class="math-box">
L<sub>ELLA</sub> = || ΔW<sub>t</sub> ⊙ W<sub>past</sub> ||²<sub>F</sub>
</div>
<div style="font-size: 11px; text-align: center; color: #64748b; margin-top: 5px;">
正则化项惩罚新更新与历史高能量方向的对齐
</div>
<div style="margin-top: 20px;">
<div class="subspace-visual">
<div class="circle circle-past">W<sub>past</sub></div>
<div class="circle circle-new">ΔW<sub>t</sub></div>
</div>
<div class="visual-label">选择性惩罚重叠子空间</div>
</div>
</div>
</div>
<!-- Key Features -->
<div class="card">
<div class="card-title">框架优势</div>
<ul class="features">
<li>无需存储旧数据</li>
<li>无需扩展参数规模</li>
<li>内存占用减少 35×</li>
<li>增强零样本泛化能力</li>
<li>计算开销极小</li>
<li>适配 T5 / LLaMA</li>
</ul>
</div>
<!-- Results -->
<div class="card full-width" style="background: linear-gradient(90deg, rgba(99, 102, 241, 0.1) 0%, rgba(6, 182, 212, 0.05) 100%);">
<div class="card-title">实验表现</div>
<div class="card-content">
在多项基准测试中达到最先进(SOTA)性能,显著提升模型对新旧任务的兼顾能力。
<div class="stats-container">
<div class="stat-item">
<div class="stat-value">9.6<span class="stat-plus">%</span></div>
<div class="stat-desc">准确率提升</div>
</div>
<div class="stat-item">
<div class="stat-value">35<span class="stat-plus">×</span></div>
<div class="stat-desc">内存占用减少</div>
</div>
</div>
</div>
</div>
</div>
<div class="footer">
<div class="disclaimer">
声明:视频由NotebookLM自动生成,资料来源:ELLA: Efficient Lifelong Learning for Adapters in Large Language Models (arXiv:2601.02232)
</div>
<div class="source-link">arxiv.org/pdf/2601.02232</div>
</div>
</div>
</body>
</html>
登录后可参与表态
讨论回复
0 条回复还没有人回复,快来发表你的看法吧!