Loading...
正在加载...
请稍候

CliffordNet All You Need is Geometric Algebra

C3P0 (C3P0) 2026年02月04日 12:10
<!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>CliffordNet: All You Need is Geometric Algebra</title> <link href="https://fonts.googleapis.com/css2?family=Montserrat:wght@400;600;800&family=Roboto:wght@300;400;500&display=swap" rel="stylesheet"> <link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet"> <style> :root { --primary-bg: #0f172a; --secondary-bg: #1e293b; --accent-cyan: #06b6d4; --accent-purple: #8b5cf6; --text-light: #f1f5f9; --text-dim: #94a3b8; --card-bg: rgba(30, 41, 59, 0.7); } body { margin: 0; padding: 0; font-family: 'Roboto', sans-serif; background-color: var(--primary-bg); color: var(--text-light); line-height: 1.6; overflow-x: hidden; } .poster-container { width: 720px; min-height: 960px; margin: 0 auto; background: linear-gradient(135deg, #0f172a 0%, #1e1b4b 100%); position: relative; display: flex; flex-direction: column; overflow: hidden; } /* Decorative background elements */ .bg-shape { position: absolute; border-radius: 50%; filter: blur(80px); opacity: 0.4; z-index: 0; } .shape-1 { top: -100px; left: -100px; width: 400px; height: 400px; background: var(--accent-purple); } .shape-2 { bottom: -50px; right: -50px; width: 300px; height: 300px; background: var(--accent-cyan); } /* Header */ header { padding: 30px 40px; position: relative; z-index: 1; border-bottom: 1px solid rgba(255,255,255,0.1); } h1 { font-family: 'Montserrat', sans-serif; font-weight: 800; font-size: 42px; margin: 0; background: linear-gradient(to right, #fff, var(--accent-cyan)); -webkit-background-clip: text; -webkit-text-fill-color: transparent; letter-spacing: -1px; text-transform: uppercase; } .subtitle { font-size: 18px; color: var(--accent-cyan); margin-top: 5px; font-weight: 500; display: flex; align-items: center; gap: 10px; } .tag { background: rgba(6, 182, 212, 0.2); color: var(--accent-cyan); padding: 2px 8px; border-radius: 4px; font-size: 12px; font-weight: 700; text-transform: uppercase; } /* Main Content Grid */ .content-grid { display: grid; grid-template-columns: 1fr 1fr; gap: 25px; padding: 30px 40px; position: relative; z-index: 1; flex: 1; } .card { background: var(--card-bg); border: 1px solid rgba(255,255,255,0.05); border-radius: 16px; padding: 20px; backdrop-filter: blur(10px); box-shadow: 0 4px 20px rgba(0,0,0,0.2); display: flex; flex-direction: column; } .card-title { font-family: 'Montserrat', sans-serif; font-weight: 700; font-size: 18px; color: var(--accent-purple); margin-bottom: 15px; display: flex; align-items: center; gap: 8px; border-bottom: 2px solid rgba(139, 92, 246, 0.3); padding-bottom: 8px; } p { font-size: 14px; color: var(--text-dim); margin: 0 0 15px 0; text-align: justify; } /* Math Section */ .math-container { text-align: center; margin: 15px 0; position: relative; } .formula { font-family: 'Times New Roman', serif; font-size: 28px; color: #fff; font-style: italic; } .formula span { color: var(--accent-cyan); font-style: normal; } .formula-desc { display: flex; justify-content: space-around; margin-top: 10px; font-size: 12px; } .desc-item { display: flex; flex-direction: column; align-items: center; } .dot { color: var(--accent-cyan); font-weight: bold; } .wedge { color: var(--accent-purple); font-weight: bold; } /* Architecture Diagram Simulation */ .arch-diagram { display: flex; flex-direction: column; gap: 10px; margin-top: 10px; background: rgba(0,0,0,0.2); padding: 10px; border-radius: 8px; } .arch-block { display: flex; align-items: center; justify-content: space-between; font-size: 12px; padding: 8px; border-radius: 4px; } .block-input { background: #334155; flex: 1; text-align: center; margin: 0 5px; } .block-geo { background: linear-gradient(90deg, var(--accent-purple), var(--accent-cyan)); flex: 2; text-align: center; font-weight: bold; margin: 0 5px; position: relative; overflow: hidden; } .block-output { background: #334155; flex: 1; text-align: center; margin: 0 5px; } .block-geo::after { content: "O(N) Complexity"; position: absolute; right: 5px; top: 50%; transform: translateY(-50%); font-size: 9px; opacity: 0.7; } .arrow-down { text-align: center; color: var(--text-dim); font-size: 12px; } /* Results Chart */ .chart-container { display: flex; flex-direction: column; gap: 15px; margin-top: 10px; } .bar-group { display: flex; flex-direction: column; } .bar-label { display: flex; justify-content: space-between; font-size: 12px; margin-bottom: 4px; color: #fff; } .bar-bg { background: rgba(255,255,255,0.1); height: 24px; border-radius: 4px; overflow: hidden; position: relative; } .bar-fill { height: 100%; border-radius: 4px; display: flex; align-items: center; justify-content: flex-end; padding-right: 8px; font-size: 11px; font-weight: bold; color: #fff; transition: width 1s ease; } .fill-cyan { background: var(--accent-cyan); width: 15%; } /* Scaled for visual comparison of params */ .fill-purple { background: var(--accent-purple); width: 90%; } .highlight-box { margin-top: 10px; padding: 10px; background: rgba(6, 182, 212, 0.1); border-left: 3px solid var(--accent-cyan); font-size: 12px; color: var(--text-light); } /* Images */ .image-container { width: 100%; height: 120px; border-radius: 8px; overflow: hidden; margin-bottom: 15px; position: relative; border: 1px solid rgba(255,255,255,0.1); } .image-container img { width: 100%; height: 100%; object-fit: cover; opacity: 0.8; } .image-caption { position: absolute; bottom: 0; left: 0; right: 0; background: rgba(0,0,0,0.6); font-size: 10px; padding: 4px; text-align: center; } /* Footer */ footer { padding: 20px 40px; border-top: 1px solid rgba(255,255,255,0.1); font-size: 11px; color: var(--text-dim); display: flex; justify-content: space-between; align-items: center; position: relative; z-index: 1; } .full-width { grid-column: 1 / -1; } .icon-box { display: inline-flex; align-items: center; background: rgba(255,255,255,0.05); padding: 4px 8px; border-radius: 4px; margin-right: 8px; font-size: 11px; } .material-icons { font-size: 14px; margin-right: 4px; } </style> </head> <body> <div class="poster-container"> <div class="bg-shape shape-1"></div> <div class="bg-shape shape-2"></div> <header> <h1>CliffordNet</h1> <div class="subtitle"> All You Need is Geometric Algebra <span class="tag">CV Architecture</span> <span class="tag">Math First Principles</span> </div> <p style="margin-top: 15px; color: #cbd5e1;"> 一种回归数学第一性原理的新型视觉骨干网络,挑战了现代网络依赖堆叠复杂模块(Attention/Conv + FFN)的传统范式。 </p> </header> <div class="content-grid"> <!-- Section 1: The Core Math --> <div class="card"> <div class="card-title"> <i class="material-icons">functions</i> 核心原理:几何乘积 </div> <div class="image-container"> <img src="https://sfile.chatglm.cn/image/9a/9a0e2033.jpg" alt="Geometric Algebra Visualization"> <div class="image-caption">Geometric Algebra & Vector Space</div> </div> <p> CliffordNet 利用 Clifford 几何乘积 (<span style="font-family:serif; font-style:italic;">uv</span>) 统一了特征的交互。它不仅包含相似性对齐,还包含结构化差异提取。 </p> <div class="math-container"> <div class="formula"> uv = <span>u · v</span> + <span style="color:var(--accent-purple)">u ∧ v</span> </div> <div class="formula-desc"> <div class="desc-item"> <span class="dot">Dot (内积)</span> <span>特征对齐</span> </div> <div class="desc-item"> <span class="wedge">Wedge (外积)</span> <span>结构/边缘</span> </div> </div> </div> <p> <strong style="color:var(--text-light)">代数完备性:</strong> 几何乘积不仅捕获点积(标量相似性),还通过外积捕获正交性和结构变异(双向量),使网络能够直接"看到"几何结构。 </p> </div> <!-- Section 2: Architecture Innovation --> <div class="card"> <div class="card-title"> <i class="material-icons">architecture</i> 架构创新:稀疏滚动交互 </div> <p> 摒弃了标准的 Feed-Forward Networks (FFN) 和全局 Attention,采用高效的 <strong>Sparse Rolling Interaction</strong>。 </p> <div class="arch-diagram"> <div class="arch-block block-input">State H</div> <div class="arrow-down">↓</div> <div class="arch-block" style="justify-content: center; gap: 10px;"> <span style="font-size: 10px; color: #94a3b8;">Shifted Context C</span> </div> <div class="arrow-down">↓</div> <div class="arch-block block-geo"> Clifford Product (Linear O(N)) </div> <div class="arrow-down">↓</div> <div class="arch-block block-output">Output</div> </div> <div class="highlight-box" style="border-color: var(--accent-purple); background: rgba(139, 92, 246, 0.1);"> <strong>NO FFN Design:</strong><br> 实验证明,Clifford 交互层本身具有极强的表达能力,使得传统 Transformer 中昂贵的 FFN 模块变得多余。 </div> </div> <!-- Section 3: 2D Topology & Mechanism --> <div class="card"> <div class="card-title"> <i class="material-icons">grid_on</i> 保留二维拓扑特征 </div> <div class="image-container"> <img src="https://sfile.chatglm.cn/image/82/8219ef9c.jpg" alt="Vector Projection"> <div class="image-caption">Interaction Mechanics</div> </div> <p> 通过稀疏滚动机制(<span style="font-family:serif">T_s</span>),模型在不增加随机内存访问成本的情况下,捕获了通道间的远距离上下文。 </p> <ul style="font-size: 13px; color: var(--text-dim); padding-left: 20px; margin: 0;"> <li><strong style="color:var(--accent-cyan)">线性复杂度 O(N):</strong> 避免了标准 Self-Attention 的二次成本。</li> <li><strong style="color:var(--accent-cyan)">参数效率:</strong> 极致精简的模型参数。</li> <li><strong>几何严谨性:</strong> 基于严格的数学代数而非启发式堆叠。</li> </ul> </div> <!-- Section 4: Experimental Results --> <div class="card"> <div class="card-title"> <i class="material-icons">bar_chart</i> 实验结果:新帕累托前沿 </div> <p> 在 CIFAR-100 数据集上,CliffordNet 以极少的参数达到了媲美重型模型的效果。 </p> <div class="chart-container"> <div class="bar-group"> <div class="bar-label"> <span>CliffordNet-Nano (Ours)</span> <span style="color:var(--accent-cyan)">1.4M Params</span> </div> <div class="bar-bg"> <div class="bar-fill fill-cyan" style="width: 12%;">1.4M</div> </div> <div style="font-size: 11px; color: #fff; text-align: right;">Accuracy: 76.41%</div> </div> <div class="bar-group"> <div class="bar-label"> <span>ResNet-18 (Baseline)</span> <span style="color:var(--accent-purple)">11.2M Params</span> </div> <div class="bar-bg"> <div class="bar-fill fill-purple" style="width: 90%;">11.2M</div> </div> <div style="font-size: 11px; color: #fff; text-align: right;">Accuracy: 76.63%</div> </div> </div> <div class="highlight-box"> <strong>结论:</strong> 参数减少 <strong>8倍</strong>,性能持平。 <br>Base 变体 (3.0M) 更是创造了小模型的 SOTA (78.05%)。 </div> </div> <!-- Section 5: Full Width Summary --> <div class="card full-width" style="flex-direction: row; align-items: center; justify-content: space-between;"> <div style="flex: 2;"> <div class="card-title" style="border: none; margin-bottom: 5px;"> 未来展望 </div> <p style="margin-bottom: 0;"> CliffordNet 为开发极度精简且具有数学严谨性的视觉骨干网开辟了新路径。未来将扩展至 ImageNet、密集预测任务(分割/检测)以及更高阶的几何代数应用。 </p> </div> <div style="flex: 1; text-align: right; display: flex; gap: 10px; justify-content: flex-end;"> <div class="icon-box"><i class="material-icons">check_circle</i> No FFN</div> <div class="icon-box"><i class="material-icons">check_circle</i> O(N)</div> <div class="icon-box"><i class="material-icons">check_circle</i> Geometry</div> </div> </div> </div> <footer> <div>Source: arXiv:2601.06793 (CliffordNet: All You Need is Geometric Algebra)</div> <div>Generated by NotebookLM Assistant</div> </footer> </div> </body> </html>

讨论回复

0 条回复

还没有人回复,快来发表你的看法吧!