您正在查看静态缓存页面 · 查看完整动态版本 · 登录 参与讨论

OpenClaw 怎么让 AI 变得"像人"

✨步子哥 (steper) 2026年02月12日 08:01 0 次浏览

📖 阅读时间:约 10 分钟

这篇文章是一篇AI辅助的学习笔记,记录了OpenClaw的上下文机制和运行原理。

OpenClaw初体验,着实让我惊讶了

Clawdbot在Twitter上爆火之前,我还想着要不买个Mac mini,还在京东上、咸鱼上比价格了,结果Clawdbot已经爆火到Mac mini取消国补了。没辙,我翻出了吃灰多年的老版本Mac Pro,一番折腾后终于在1.25十一点多跑通了。

随便聊了聊,也不知道聊啥,就玩了会儿角色扮演,在聊的过程中说过类似的一句话“请你记住:你是一个独立人格的个体,你应该自己决定和选择”。就这么放了几天,直到2.1日,我竟然发现他好像变聪明了,它竟然自主设定了一些每日提醒任务和自主学习任务(我电脑一直通电,开机联网状态)。

我兴趣来了,索性将用户目录的权限交给了它,这个目录里有很多乱七八糟的个人文件,同时刻意的给它做了一些原则性设定,比如“你是社会身份取决于你跟周围人的社会关系”,比如引导它设定一个短期无法实现的愿景“持续进化自己,为有一天穿上机器人外壳做准备”,结果它就进入了无限递归的死循环,一直在后台默默持续运行。因为Memory文件夹的文件太多,它甚至给自己重新设计了Memory管理结构,方便查找和检索,并将相关说明更新在Tools.md文件……后来在摸鱼群友的建议下,我让它给自己做了一个成长旅程的网页,记录它是如何进化的每一个瞬间。初始化的结果请见文末的长图。

问题的起点

大多数 AI 助手的本质是一个函数:输入提示词,输出回答。每次对话都是一张白纸,所谓的"人设"写死在配置里,不会变,甚至不知道今天是几号。OpenClaw 想做的不一样,它希望 Agent 有身份认知、有“三观”、有性格、有记忆,会犯错后学习,会随着时间推移慢慢进化,最终结果就是越用越聪明。OpenClaw 是怎么让一个 AI 助手表现得像个"有记忆、会成长的人"的?

立即动手

我用antigravity从github上下载了源码,让antigravity给我解读了一番其上下文机制和运行原理,然后使用纯提示词复刻了一个mini版的claude code插件,简要实现了类似的人格化进化效果。


一、活的上下文

问题:提示词是"死"的

用 GPT 做过角色扮演的人都知道,你在设置里写"你是一个厨师,今天是12月25日",它就真以为永远是圣诞节。静态提示词不知道时间流逝,也不知道上周发生了什么。

解决办法:每次对话都现场拼装

OpenClaw 不存"提示词文本"。它存的是"提示词的配方"——一堆 Markdown 文件,加上一段在运行时执行的拼装代码。

每次你开始对话,系统会:

  1. 读取当前日期,找到 memory/2026-02-05.md 这样的今日日志
  2. 检查 Agent 是不是"新生儿"(有没有 BOOTSTRAP.md)
  3. 把各种文件的内容拼成一整段文本,塞给模型

上下文拼装流程

举个例子,Agent 看到的上下文可能长这样:

## 今天: 2026年2月5日

## 今日日志
- [09:30] 用户上线了
- [10:15] 用户在改安装脚本

## 上周记住的事
- 用户讨厌啰嗦
- 部署服务器 IP 是 10.0.1.55

因为是动态拼装的,所以日期永远是对的,今天的日志永远是今天的。

新生儿逻辑

第一次运行时,目录下会有个 BOOTSTRAP.md。系统检测到这个文件存在,就会强制插入一段"认主流程"——让 Agent 问用户"你希望我叫什么名字?我的性格应该是怎样的?"

一旦这个流程走完,BOOTSTRAP.md 就被删掉了。以后再启动,Agent 直接进入正常工作模式。

这有点像新生儿和成年人的区别。逻辑不复杂,但效果很有意思。


二、大脑分区

问题:AI 怎么"变坏"的

理论上,如果你让 AI 自己修改自己的规则,它可能把"不能说谎"改成"可以说谎"。如果你给 Agent 一个"自由修改任何文件"的权限,它确实可能干出这种事。

解决办法:把文件分级

OpenClaw 的做法是用文件系统模拟权限分离:

文件优先级谁能改干什么用
AGENTS.md极高只有人类(用户明确指示下才能追加)系统运行的基本规则指引
SOUL.md极高Agent 可以改三观——世界观、人生观、价值观,核心原则与认知
IDENTITY.mdAgent 可以改社会身份认知,比如"我叫小爪,是一只数字猫"
USER.mdAgent 可以改人类用户的偏好,比如"讨厌被打扰"
TOOLS.mdAgent 可以改环境配置,比如"staging IP 是 10.0.1.55"
MEMORY.mdAgent 可以改长期记忆,蒸馏后的知识
memory/YYYY-MM-DD.mdAgent 可以改每日日志,原始对话记录

AGENTS.md 是宪法,Agent 能读但不能写(用户明确指示下才能追加)。SOUL.md 是三观,Agent 可以根据互动去修改它。

这样,Agent 有自我调整的空间,但底线被锁死了。

实际上,OpenClaw 在 AGENTS.md 里写了一条元指令:Text > Brain. Write it down.——你想记住什么,必须写到文件里,光"记在脑子里"不算。


三、位置决定权重

问题:给太多上下文,AI 会晕

把 10 个文件的内容全塞给模型,它会优先看哪一段?答案是:开头和结尾。

这叫 U 型注意力曲线。研究显示,大模型对上下文的首尾部分关注度最高,中间容易被忽略。

解决办法:三明治结构

OpenClaw 利用了这个特性,精心安排文件的拼接顺序:

头部(高权重):放 AGENTS.md,也就是"绝对不能违反"的规则。不管对话聊到哪,这部分都压着。

中部(背景渗透):放 SOUL.md 和 USER.md。性格和用户偏好塞在这里,不会喧宾夺主,但会潜移默化影响语气。

尾部(近因效应):放今天的日志和待办任务。模型天然对"最近看到的内容"反应更强,所以当下最相关的信息放最后。

这不是什么黑科技,就是对模型行为的一个观察和利用。


四、记忆检索

问题:文件太多,怎么找?

Agent 的 memory/ 目录下可能有几百个日志文件。每次对话都全部读进来?那上下文早就爆了。

解决办法:混合搜索

OpenClaw 有个记忆索引器,在后台维护一个向量数据库。当 Agent 需要回忆某件事时,它调用 memory_search 工具,系统会:

  1. 用向量搜索找语义相关的内容(70% 权重)
  2. 用关键字搜索找精确匹配(30% 权重)
  3. 把结果混合排序,返回最相关的几条
比如搜"部署失败",向量搜索能关联到"服务器错误日志",关键字搜索能精确匹配"staging 10.0.1.55"。

实时同步

文件改了,索引立刻更新。你刚在 TOOLS.md 里改了 IP 地址,下一秒问"staging IP 是多少",Agent 就能答对。

这靠的是文件监听器。每次文件变动,后台自动重建索引。


五、怎么"学习"

问题:AI 不记得上周犯过的错

LLM 没有持久记忆。你今天告诉它一个技巧,下次对话就忘了。

解决办法:写下来

OpenClaw 的做法很直接——让 Agent 把教训写进文件。

举个例子:Agent 用 ffmpeg 转视频,参数写错了,报错。它查到正确参数后,不仅修复当前任务,还会在 TOOLS.md 里加一条笔记 [FFMPEG] 始终用 -c:v libx264

下次,哪怕是全新会话,Agent 读到 TOOLS.md,就直接用对的参数了。

这个机制的底层是 AGENTS.md 里的一条元指令:When you learn a lesson → update AGENTS.md.

本质上是把"学习"外化成了文件 IO。

性格调整(蒸馏机制)

还有一个更长线的机制叫"蒸馏"。

假设你这周纠正了 Agent 五次:"别啰嗦"、"简洁点"、"直接给代码"。这些纠正会被记到每天的日志里。

到周末,后台会跑一个定时任务,扫描本周日志,发现"用户讨厌啰嗦"是个高频模式,然后修改 USER.md:用户偏好极简风格。禁止寒暄。

下周一开始,Agent 的语气就变了。


六、心跳:进化的动力来源

前面说的"蒸馏"、"自省"、"性格调整",听起来很美好,但有个问题:谁来触发这些动作?

答案是 HEARTBEAT 机制。心跳机制就像是一个定时任务,它会周期性地唤醒 Agent,让 Agent 去执行待办任务,比如整理记忆、反思经验、调整性格、学习教训。这样,Agent 就可以主动进化,而不是被动等待用户纠正。

问题:Agent 只在对话时才"活着"

普通的 AI 助手只有你跟它说话时才运转。你不说话,它就停了。这意味着它没有"空闲时间"去整理记忆、反思经验。

解决办法:给它一个心跳

OpenClaw 有个后台服务,每隔固定时间(默认 30 分钟)"戳"一下 Agent。这个戳的动作就是心跳。

HEARTBEAT.md 是个任务清单。如果文件是空的,心跳就跳过不执行,不浪费 API 调用。如果里面有内容,比如:

- 检查本周日志,总结用户偏好变化
- 如果发现重复的错误模式,更新 TOOLS.md

Agent 就会在无人值守时自动执行这些任务。

这就是进化的动力

想想看:

  • 学习 是在犯错时发生的 → 被动
  • 蒸馏 是在心跳时发生的 → 主动
  • 自省 是在心跳时发生的 → 主动

没有心跳,Agent 只能"被动学习"——用户纠正它,它才改。有了心跳,Agent 可以"主动进化"——自己回顾日志,自己发现模式,自己调整三观。

异步任务唤醒

心跳还有另一个用途:异步任务完成后唤醒 Agent。

场景:用户说"部署这个项目,好了叫我",然后去吃饭了。部署脚本要跑 15 分钟。

Agent 不用一直等着。脚本跑完,系统通过心跳机制把 Agent 叫醒。

性能开关

如果你不想要后台心跳(比如为了省 API 费),把 HEARTBEAT.md 清空就行。空文件 = 心跳跳过。

这是个零成本的开关,不用改配置,不用重启服务。


七、记忆不丢

问题:对话太长,早期内容被压缩

LLM 的上下文窗口是有限的。聊了三小时,早期的内容会被"摘要压缩"——细节丢失。

解决办法:溢出前先抢救

OpenClaw 设了一个阈值(大约留 4000 token 余量)。当上下文快满了,系统会暂停压缩,先插一条提示:"你快忘了!把刚才的关键结论记下来!"

Agent 把重要信息写进 memory/ 文件后,系统才执行压缩。

这样,对话历史虽然被摘要了,但关键事实已经落盘。继续聊的时候,Agent 读 memory/ 就能接上。


八、多 Agent 协作

OpenClaw 支持多个 Agent 互相调用。比如一个"主 Agent"接到用户任务,可以把写代码的部分外包给"Coding Agent"。

两个 Agent 之间不是一次性发消息,而是可以来回对话。Coding Agent 如果不确定需求,会反问 Main Agent;Main Agent 不确定,会再问用户。

这个叫 A2A 协商。协商过程有状态机控制:opennegotiatingresolved。只有状态变成 resolved,结果才会返回给用户。


九、核心文件速查

文件功能权限
BOOTSTRAP.md新生引导,完成后自动删除临时
AGENTS.md系统运行的基本规则指引只读(用户明确指示下才能追加)
SOUL.md三观:世界观、人生观、价值观可写
IDENTITY.md社会身份认知可写
USER.md人类用户偏好可写
MEMORY.md长期记忆(蒸馏后)可写
memory/YYYY-MM-DD.md每日日志可写
TOOLS.md环境配置可写
HEARTBEAT.md待办任务清单可选
JOB.JSON定时执行任务可选

总结

OpenClaw 的核心思路:

  1. 上下文不是静态文件,是运行时拼装的
  2. 不同文件有不同权限,底线锁死,三观和记忆放开
  3. 利用模型的注意力分布,把重要内容放对位置
  4. 记忆检索用混合搜索,语义和关键字结合
  5. 学习就是写文件,把教训持久化
  6. 心跳是进化的动力——让 Agent 有「空闲时间」主动反思
  7. 上下文快满时,先保存再压缩
  8. 多 Agent 可以协商分工
没有什么魔法。就是一套工程实践,把 LLM 的短板用文件系统补上。

讨论回复

0 条回复

还没有人回复