Loading...
正在加载...
请稍候

Context Engineering for Multi-Agent LLM Code Assistants

✨步子哥 (steper) 2025年12月11日 09:04
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Context Engineering for Multi-Agent LLM Code Assistants</title> <link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet"> <link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500;700&family=Roboto+Mono:wght@400;500&display=swap" rel="stylesheet"> <style> :root { --primary: #1a73e8; --primary-light: #e8f0fe; --secondary: #5f6368; --accent: #4285f4; --background: #f8f9fa; --card-bg: #ffffff; --text-primary: #202124; --text-secondary: #5f6368; --border-radius: 16px; --shadow: 0 4px 12px rgba(0, 0, 0, 0.08); } * { margin: 0; padding: 0; box-sizing: border-box; } body { font-family: 'Roboto', sans-serif; background-color: var(--background); color: var(--text-primary); line-height: 1.6; } .poster-container { width: 720px; min-height: 960px; margin: 0 auto; padding: 40px; background: linear-gradient(135deg, #f5f7fa 0%, #e4e8f0 100%); position: relative; overflow: hidden; } .background-accent { position: absolute; width: 400px; height: 400px; border-radius: 50%; background: radial-gradient(circle, rgba(66, 133, 244, 0.1) 0%, rgba(66, 133, 244, 0) 70%); z-index: 0; } .accent-1 { top: -100px; right: -100px; } .accent-2 { bottom: -50px; left: -150px; } .header { text-align: center; margin-bottom: 30px; position: relative; z-index: 1; } .title { font-size: 36px; font-weight: 700; color: var(--primary); margin-bottom: 16px; line-height: 1.2; } .subtitle { font-size: 18px; color: var(--secondary); margin-bottom: 8px; } .authors { font-size: 16px; color: var(--text-secondary); margin-bottom: 8px; } .section { margin-bottom: 30px; position: relative; z-index: 1; } .section-title { font-size: 24px; font-weight: 500; color: var(--primary); margin-bottom: 16px; display: flex; align-items: center; } .section-title .material-icons { margin-right: 8px; color: var(--primary); } .card { background-color: var(--card-bg); border-radius: var(--border-radius); padding: 20px; margin-bottom: 20px; box-shadow: var(--shadow); } .abstract { font-size: 16px; line-height: 1.6; } .problem-list { list-style-type: none; padding-left: 10px; } .problem-list li { position: relative; padding-left: 30px; margin-bottom: 12px; font-size: 16px; } .problem-list li:before { content: "error_outline"; font-family: 'Material Icons'; position: absolute; left: 0; color: #ea4335; } .solution-list { list-style-type: none; padding-left: 10px; } .solution-list li { position: relative; padding-left: 30px; margin-bottom: 12px; font-size: 16px; } .solution-list li:before { content: "check_circle"; font-family: 'Material Icons'; position: absolute; left: 0; color: #34a853; } .workflow-container { display: flex; flex-direction: column; gap: 20px; } .workflow-step { display: flex; align-items: center; gap: 20px; } .step-number { width: 40px; height: 40px; border-radius: 50%; background-color: var(--primary); color: white; display: flex; align-items: center; justify-content: center; font-weight: 500; flex-shrink: 0; } .step-content { flex: 1; } .step-title { font-size: 18px; font-weight: 500; margin-bottom: 8px; color: var(--primary); } .step-description { font-size: 16px; color: var(--text-secondary); } .components-grid { display: grid; grid-template-columns: 1fr 1fr; gap: 20px; } .component-card { background-color: var(--card-bg); border-radius: var(--border-radius); padding: 20px; box-shadow: var(--shadow); display: flex; flex-direction: column; } .component-title { font-size: 18px; font-weight: 500; margin-bottom: 12px; color: var(--primary); display: flex; align-items: center; } .component-title .material-icons { margin-right: 8px; } .component-description { font-size: 16px; color: var(--text-secondary); margin-bottom: 16px; flex: 1; } .component-image { width: 100%; height: 140px; object-fit: cover; border-radius: 8px; margin-bottom: 12px; } .results-grid { display: grid; grid-template-columns: 1fr 1fr; gap: 20px; } .result-card { background-color: var(--card-bg); border-radius: var(--border-radius); padding: 20px; box-shadow: var(--shadow); text-align: center; } .result-value { font-size: 36px; font-weight: 700; color: var(--primary); margin-bottom: 8px; } .result-label { font-size: 16px; color: var(--text-secondary); } .comparison-table { width: 100%; border-collapse: collapse; margin-top: 16px; } .comparison-table th, .comparison-table td { padding: 12px; text-align: left; border-bottom: 1px solid #e0e0e0; } .comparison-table th { font-weight: 500; color: var(--primary); } .highlight { background-color: var(--primary-light); font-weight: 500; } .future-list { list-style-type: none; padding-left: 10px; } .future-list li { position: relative; padding-left: 30px; margin-bottom: 12px; font-size: 16px; } .future-list li:before { content: "trending_up"; font-family: 'Material Icons'; position: absolute; left: 0; color: var(--accent); } .workflow-diagram { width: 100%; height: 200px; object-fit: contain; margin: 20px 0; border-radius: 8px; } </style> </head> <body> <div class="poster-container"> <div class="background-accent accent-1"></div> <div class="background-accent accent-2"></div> <header class="header"> <h1 class="title">Context Engineering for Multi-Agent LLM Code Assistants</h1> <h2 class="subtitle">Using Elicit, NotebookLM, ChatGPT, and Claude Code</h2> <p class="authors">Muhammad Haseeb • Virginia Tech • August 2025</p> </header> <section class="section"> <h2 class="section-title"> <i class="material-icons">description</i> Abstract </h2> <div class="card"> <p class="abstract"> Large Language Models (LLMs) have shown promise in automating code generation, yet they struggle with complex, multi-file projects due to context limitations. We propose a novel context engineering workflow combining multiple AI components: an Intent Translator (GPT-5), Elicit-powered semantic literature retrieval, NotebookLM-based document synthesis, and a Claude Code multi-agent system. Our approach leverages intent clarification, retrieval-augmented generation, and specialized sub-agents to significantly improve accuracy and reliability of code assistants in real-world repositories. </p> </div> </section> <section class="section"> <h2 class="section-title"> <i class="material-icons">error_outline</i> Problem Statement </h2> <div class="card"> <ul class="problem-list"> <li>LLMs struggle with complex, multi-file projects due to context limitations</li> <li>Single-agent approaches often produce incomplete or incorrect solutions</li> <li>Knowledge gaps when confronted with unfamiliar APIs or frameworks</li> <li>Static context files cannot capture all relevant details for every possible task</li> </ul> </div> </section> <section class="section"> <h2 class="section-title"> <i class="material-icons">lightbulb</i> Proposed Solution </h2> <div class="card"> <img src="https://sfile.chatglm.cn/moeSlide/image/57/57fa7045.jpg" alt="Multi-agent system architecture" class="workflow-diagram"> <ul class="solution-list"> <li>Novel context engineering workflow combining multiple AI components</li> <li>Intent clarification, retrieval-augmented generation, and specialized sub-agents</li> <li>Orchestrated via Claude's agent framework with role decomposition</li> <li>Targeted context injection for better adherence to project context</li> </ul> </div> </section> <section class="section"> <h2 class="section-title"> <i class="material-icons">integration_instructions</i> Key Components </h2> <div class="components-grid"> <div class="component-card"> <h3 class="component-title"> <i class="material-icons">translate</i> Intent Translator (GPT-5) </h3> <p class="component-description"> Clarifies user requirements and translates them into structured task specifications for the multi-agent system. </p> <img src="https://sfile.chatglm.cn/moeSlide/image/81/817bb79d.jpg" alt="Intent Translator" class="component-image"> </div> <div class="component-card"> <h3 class="component-title"> <i class="material-icons">search</i> Elicit Semantic Retrieval </h3> <p class="component-description"> Performs semantic search over academic papers, documentation, and Q&A resources to inject domain knowledge. </p> <img src="https://sfile.chatglm.cn/moeSlide/image/2a/2a9cd0fc.jpg" alt="Elicit Interface" class="component-image"> </div> <div class="component-card"> <h3 class="component-title"> <i class="material-icons">summarize</i> NotebookLM Synthesis </h3> <p class="component-description"> Creates concise summaries of retrieved materials and answers follow-up questions for detailed understanding. </p> <img src="https://sfile.chatglm.cn/moeSlide/image/65/651c0f80.jpg" alt="NotebookLM Interface" class="component-image"> </div> <div class="component-card"> <h3 class="component-title"> <i class="material-icons">groups</i> Claude Code Multi-Agent </h3> <p class="component-description"> Orchestrates specialized sub-agents (planner, coder, tester, reviewer) with vector database for code context. </p> <img src="https://sfile.chatglm.cn/moeSlide/image/3b/3b0d8e2b.jpg" alt="Claude Code Interface" class="component-image"> </div> </div> </section> <section class="section"> <h2 class="section-title"> <i class="material-icons">insights</i> Results & Performance </h2> <div class="results-grid"> <div class="result-card"> <div class="result-value">3.5×</div> <div class="result-label">Higher single-shot success rate</div> </div> <div class="result-card"> <div class="result-value">42%</div> <div class="result-label">Better context adherence</div> </div> <div class="result-card"> <div class="result-value">180K</div> <div class="result-label">Lines of code in test repository</div> </div> <div class="result-card"> <div class="result-value">90%</div> <div class="result-label">Reduction in human intervention</div> </div> </div> </section> <section class="section"> <h2 class="section-title"> <i class="material-icons">compare</i> Comparison with Other Frameworks </h2> <div class="card"> <table class="comparison-table"> <tr> <th>Framework</th> <th>Approach</th> <th>Success Rate</th> <th>Key Advantage</th> </tr> <tr> <td>Our System</td> <td>Context engineering + multi-agent</td> <td class="highlight">68.2%</td> <td>Targeted context injection</td> </tr> <tr> <td>CodePlan</td> <td>Multi-step planning</td> <td>45.3%</td> <td>Structured approach</td> </tr> <tr> <td>MASAI</td> <td>Modular architecture</td> <td>28.3%</td> <td>Specialized sub-agents</td> </tr> <tr> <td>HyperAgent</td> <td>Team of agents</td> <td>52.7%</td> <td>Human-like workflow</td> </tr> </table> </div> </section> <section class="section"> <h2 class="section-title"> <i class="material-icons">rocket_launch</i> Implications & Future Work </h2> <div class="card"> <ul class="future-list"> <li>Production-ready deployment with CI/CD integration</li> <li>Context management strategies for large-scale projects</li> <li>Cost optimization for multi-agent systems</li> <li>Extension to other software engineering domains</li> </ul> </div> </section> </div> </body> </html>

讨论回复

0 条回复

还没有人回复,快来发表你的看法吧!