<!DOCTYPE html><html lang="zh-CN"><head>
<meta charset="UTF-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<title>《Attention Is All You Need》的L2平方复杂度与"黑盒"问题:替代方案深度研究及新模型分析</title>
<script src="https://cdn.tailwindcss.com"></script>
<link href="https://fonts.googleapis.com/css2?family=Playfair+Display:ital,wght@0,400;0,700;1,400&family=Inter:wght@300;400;500;600;700&display=swap" rel="stylesheet"/>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css"/>
<script src="https://cdn.jsdelivr.net/npm/mermaid@10.6.1/dist/mermaid.min.js"></script>
<script>
tailwind.config = {
theme: {
extend: {
fontFamily: {
'serif': ['Playfair Display', 'serif'],
'sans': ['Inter', 'sans-serif'],
},
colors: {
'primary': '#1e293b',
'secondary': '#64748b',
'accent': '#0f766e',
'muted': '#f1f5f9',
}
}
}
}
</script>
<style>
.mermaid-container {
display: flex;
justify-content: center;
min-height: 300px;
max-height: 800px;
background: #ffffff;
border: 2px solid #e5e7eb;
border-radius: 12px;
padding: 30px;
margin: 30px 0;
box-shadow: 0 8px 25px rgba(0, 0, 0, 0.08);
position: relative;
overflow: hidden;
}
.mermaid-container .mermaid {
width: 100%;
max-width: 100%;
height: 100%;
cursor: grab;
transition: transform 0.3s ease;
transform-origin: center center;
display: flex;
justify-content: center;
align-items: center;
touch-action: none; /* 防止触摸设备上的默认行为 */
-webkit-user-select: none; /* 防止文本选择 */
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.mermaid-container .mermaid svg {
max-width: 100%;
height: 100%;
display: block;
margin: 0 auto;
}
.mermaid-container .mermaid:active {
cursor: grabbing;
}
.mermaid-container.zoomed .mermaid {
height: 100%;
width: 100%;
cursor: grab;
}
.mermaid-controls {
position: absolute;
top: 15px;
right: 15px;
display: flex;
gap: 10px;
z-index: 20;
background: rgba(255, 255, 255, 0.95);
padding: 8px;
border-radius: 8px;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
}
.mermaid-control-btn {
background: #ffffff;
border: 1px solid #d1d5db;
border-radius: 6px;
padding: 10px;
cursor: pointer;
transition: all 0.2s ease;
color: #374151;
font-size: 14px;
min-width: 36px;
height: 36px;
text-align: center;
display: flex;
align-items: center;
justify-content: center;
}
.mermaid-control-btn:hover {
background: #f8fafc;
border-color: #3b82f6;
color: #3b82f6;
transform: translateY(-1px);
}
.mermaid-control-btn:active {
transform: scale(0.95);
}
/* Enhanced contrast for different node types with better text visibility */
.mermaid .node rect,
.mermaid .node circle,
.mermaid .node ellipse,
.mermaid .node polygon {
stroke-width: 2px !important;
}
/* Primary nodes with high contrast text */
.mermaid .node rect {
fill: #f8fafc !important;
stroke: #0f766e !important;
}
.mermaid .node rect + text {
fill: #1f2937 !important;
font-weight: 700 !important;
font-size: 14px !important;
}
/* Secondary nodes with teal background */
.mermaid .node circle {
fill: #0f766e !important;
stroke: #0d5f58 !important;
}
.mermaid .node circle + text {
fill: #ffffff !important;
font-weight: 600 !important;
font-size: 13px !important;
}
/* Tertiary nodes with neutral background */
.mermaid .node ellipse {
fill: #f1f5f9 !important;
stroke: #374151 !important;
}
.mermaid .node ellipse + text {
fill: #1f2937 !important;
font-weight: 600 !important;
font-size: 13px !important;
}
/* Quaternary nodes with light background */
.mermaid .node polygon {
fill: #e2e8f0 !important;
stroke: #475569 !important;
}
.mermaid .node polygon + text {
fill: #111827 !important;
font-weight: 500 !important;
font-size: 12px !important;
}
/* Default node styling for better contrast */
.mermaid .node rect + text,
.mermaid .node circle + text,
.mermaid .node ellipse + text,
.mermaid .node polygon + text {
text-shadow: 0 1px 2px rgba(255, 255, 255, 0.8) !important;
}
.mermaid .edgePath path {
stroke: #64748b !important;
stroke-width: 2px !important;
}
.mermaid .edgeLabel {
background-color: rgba(255, 255, 255, 0.95) !important;
border-radius: 4px !important;
padding: 2px 6px !important;
font-size: 11px !important;
font-weight: 500 !important;
color: #374151 !important;
border: 1px solid #e2e8f0 !important;
}
/* Mermaid theme customization for better contrast */
.mermaid .node rect {
fill: #f8fafc !important;
stroke: #0f766e !important;
stroke-width: 2px !important;
}
.mermaid .node circle {
fill: #0f766e !important;
stroke: #0d5f58 !important;
stroke-width: 2px !important;
}
.mermaid .node ellipse {
fill: #f1f5f9 !important;
stroke: #374151 !important;
stroke-width: 2px !important;
}
.mermaid .node polygon {
fill: #e2e8f0 !important;
stroke: #475569 !important;
stroke-width: 2px !important;
}
.mermaid .edgePath path {
stroke: #64748b !important;
stroke-width: 2px !important;
}
.mermaid .edgeLabel {
background-color: rgba(255, 255, 255, 0.95) !important;
color: #374151 !important;
border: 1px solid #e2e8f0 !important;
border-radius: 4px !important;
padding: 2px 6px !important;
font-size: 11px !important;
font-weight: 500 !important;
}
/* Responsive Mermaid Controls */
<span class="mention-invalid">@media</span> (max-width: 1024px) {
.mermaid-control-btn:not(.reset-zoom) {
display: none;
}
.mermaid-controls {
top: auto;
bottom: 15px;
right: 15px;
}
}
</style>
<base target="_blank">
</head>
<body class="font-sans text-primary bg-white leading-relaxed">
<!-- Toggle button for mobile -->
<button id="toc-toggle" class="fixed top-4 left-4 z-50 p-2 bg-teal-700 text-white rounded-lg shadow-lg lg:hidden">
<i class="fas fa-bars"></i>
</button>
<!-- Fixed Table of Contents -->
<nav id="toc-nav" class="fixed left-0 top-0 h-full w-80 bg-muted border-r border-gray-200 overflow-y-auto z-40 p-6 transform -translate-x-full lg:translate-x-0 transition-transform duration-300">
<button id="toc-close" class="absolute top-4 right-4 p-2 text-gray-500 lg:hidden">
<i class="fas fa-times"></i>
</button>
<h3 class="font-serif text-lg font-bold mb-6 text-primary">目录</h3>
<ul class="space-y-3 text-sm">
<li>
<a href="#introduction" class="block text-secondary hover:text-accent transition-colors">引言</a>
</li>
<li>
<a href="#core-challenges" class="block text-secondary hover:text-accent transition-colors">1. Transformer模型的核心挑战</a>
<ul class="ml-4 mt-2 space-y-2 text-xs">
<li>
<a href="#l2-complexity" class="block text-secondary hover:text-accent transition-colors">1.1 L2平方复杂度问题</a>
</li>
<li>
<a href="#black-box-problem" class="block text-secondary hover:text-accent transition-colors">1.2 "黑盒"问题</a>
</li>
</ul>
</li>
<li>
<a href="#existing-solutions" class="block text-secondary hover:text-accent transition-colors">2. 现有替代方案综述</a>
<ul class="ml-4 mt-2 space-y-2 text-xs">
<li>
<a href="#complexity-optimization" class="block text-secondary hover:text-accent transition-colors">2.1 复杂度优化方案</a>
</li>
<li>
<a href="#interpretability-solutions" class="block text-secondary hover:text-accent transition-colors">2.2 可解释性解决方案</a>
</li>
</ul>
</li>
<li>
<a href="#new-model-analysis" class="block text-secondary hover:text-accent transition-colors">3. 新模型分析:Causal Grassmann Transformer</a>
<ul class="ml-4 mt-2 space-y-2 text-xs">
<li>
<a href="#core-ideas" class="block text-secondary hover:text-accent transition-colors">3.1 核心思想</a>
</li>
<li>
<a href="#model-design" class="block text-secondary hover:text-accent transition-colors">3.2 模型设计</a>
</li>
<li>
<a href="#performance-analysis" class="block text-secondary hover:text-accent transition-colors">3.3 性能分析</a>
</li>
</ul>
</li>
<li>
<a href="#conclusion" class="block text-secondary hover:text-accent transition-colors">4. 结论与展望</a>
</li>
</ul>
</nav>
<!-- Main Content -->
<main class="ml-0 lg:ml-80 min-h-screen">
<!-- Hero Section -->
<section class="relative bg-gradient-to-br from-slate-50 to-blue-50 py-16">
<div class="max-w-6xl mx-auto px-8">
<!-- Bento Grid Layout -->
<div class="grid grid-cols-1 md:grid-cols-12 gap-6 mb-12">
<!-- Main Title -->
<div class="md:col-span-8 bg-white rounded-lg shadow-sm p-8">
<h1 class="font-serif text-3xl lg:text-4xl font-bold text-primary mb-4 leading-tight">
<em class="text-accent">《Attention Is All You Need》</em>的L2平方复杂度与"黑盒"问题:
<span class="block mt-2">替代方案深度研究及新模型分析</span>
</h1>
<p class="text-secondary text-lg leading-relaxed">
深入探讨Transformer架构的核心挑战,分析Causal Grassmann Transformer模型如何从根本上解决计算复杂度与可解释性两大难题
</p>
</div>
<!-- Key Highlights -->
<div class="md:col-span-4 space-y-4">
<div class="bg-accent text-white rounded-lg p-6">
<i class="fas fa-chart-line text-2xl mb-3"></i>
<h3 class="font-bold mb-2">线性复杂度</h3>
<p class="text-sm opacity-90">从O(n²)降低到O(n),显著提升长序列处理效率</p>
</div>
<div class="bg-primary text-white rounded-lg p-6">
<i class="fas fa-eye text-2xl mb-3"></i>
<h3 class="font-bold mb-2">几何可解释性</h3>
<p class="text-sm opacity-90">基于Grassmann流形的内在可解释架构</p>
</div>
</div>
</div>
<!-- Visual Element -->
<div class="relative">
<img src="https://kimi-web-img.moonshot.cn/img/i-blog.csdnimg.cn/4e619f361691edd2f8c1af84d265c97abee3fbfa.png" alt="展示几何深度学习中的Grassmann流形结构" class="w-full h-64 object-cover rounded-lg shadow-lg" size="medium" aspect="wide" query="Grassmann流形 几何深度学习" referrerpolicy="no-referrer" data-modified="1" data-score="0.00"/>
<div class="absolute inset-0 bg-gradient-to-r from-accent/20 to-primary/20 rounded-lg"></div>
</div>
</div>
</section>
<!-- Introduction -->
<section id="introduction" class="py-16 bg-white">
<div class="max-w-4xl mx-auto px-8">
<div class="prose prose-lg max-w-none">
<p class="text-xl text-secondary leading-relaxed mb-8">
自2017年Vaswani等人发表开创性论文《Attention Is All You Need》以来,基于Transformer架构的模型已成为自然语言处理乃至整个深度学习领域的基石。然而,随着模型规模的指数级增长和应用场景的不断拓宽,Transformer架构固有的两个核心挑战也日益凸显:自注意力机制带来的<strong class="text-accent">二次方计算复杂度</strong>和<strong class="text-accent">"黑盒"特性</strong>。
</p>
<blockquote class="border-l-4 border-accent pl-6 italic text-lg text-primary my-8">
"论文《Attention Is Not What You Need》中提出的Causal Grassmann Transformer模型,为应对标准Transformer的L2平方复杂度和'黑盒'可解释性两大核心挑战,提供了一种极具创新性的综合解决方案。"
</blockquote>
</div>
</div>
</section>
<!-- Core Challenges Section -->
<section id="core-challenges" class="py-16 bg-muted">
<div class="max-w-6xl mx-auto px-8">
<h2 class="font-serif text-3xl font-bold text-primary mb-12 text-center">Transformer模型的核心挑战</h2>
<!-- L2 Complexity Challenge -->
<div id="l2-complexity" class="mb-16">
<h3 class="font-serif text-2xl font-bold text-primary mb-8">L2平方复杂度问题</h3>
<div class="grid grid-cols-1 lg:grid-cols-2 gap-8 mb-8">
<div>
<h4 class="font-bold text-lg mb-4 text-accent">自注意力机制的计算瓶颈</h4>
<p class="text-secondary mb-4">
自注意力机制的核心计算过程涉及计算序列中所有token对之间的相互关系。对于长度为n的输入序列,每个token都会被线性映射为查询向量Q、键向量K和值向量V。
</p>
<div class="bg-white p-4 rounded-lg border border-gray-200">
<code class="text-sm">Attention(Q, K, V) = softmax(QK^T / sqrt(d_k))V</code>
</div>
<p class="text-secondary mt-4">
最关键的步骤是生成<strong>n×n的注意力分数矩阵</strong>,这导致了二次方复杂度的产生。
<a href="https://blog.csdn.net/shizheng_Li/article/details/144546011" target="_blank" class="text-accent hover:underline">
<sup class="text-xs">[41]</sup>
</a>
</p>
</div>
<div>
<img src="https://kimi-web-img.moonshot.cn/img/pic2.zhimg.com/e1944e953dbc12f0c42dd49579cc092c157ca771.jpg" alt="展示Transformer模型中注意力分数矩阵计算过程" class="w-full h-48 object-cover rounded-lg shadow-md" size="medium" aspect="wide" query="Transformer注意力矩阵计算" referrerpolicy="no-referrer" data-modified="1" data-score="0.00"/>
</div>
</div>
<!-- Complexity Analysis -->
<div class="bg-white rounded-lg shadow-sm p-6 mb-8">
<h4 class="font-bold text-lg mb-4">复杂度分析:O(n²d)的时间与空间复杂度</h4>
<div class="grid grid-cols-1 md:grid-cols-3 gap-6">
<div class="text-center">
<div class="text-2xl font-bold text-accent mb-2">O(n²·d_k)</div>
<p class="text-sm text-secondary">QKᵀ矩阵乘法</p>
</div>
<div class="text-center">
<div class="text-2xl font-bold text-accent mb-2">O(n²)</div>
<p class="text-sm text-secondary">Softmax操作</p>
</div>
<div class="text-center">
<div class="text-2xl font-bold text-accent mb-2">O(n²·d_v)</div>
<p class="text-sm text-secondary">加权求和</p>
</div>
</div>
<p class="text-secondary mt-4">
综合来看,自注意力层的时间复杂度主要由O(n²·d_k)和O(n²·d_v)决定,可以近似表示为<strong>O(n²·d)</strong>。
<a href="https://blog.csdn.net/shizheng_Li/article/details/144546011" target="_blank" class="text-accent hover:underline">
<sup class="text-xs">[41]</sup>
</a>
</p>
</div>
</div>
<!-- Black Box Problem -->
<div id="black-box-problem">
<h3 class="font-serif text-2xl font-bold text-primary mb-8">"黑盒"问题</h3>
<div class="grid grid-cols-1 lg:grid-cols-2 gap-8">
<div>
<h4 class="font-bold text-lg mb-4 text-accent">模型可解释性的缺失</h4>
<p class="text-secondary mb-4">
Transformer模型的"黑盒"特性主要体现在其决策过程的不可知性。当一个模型做出预测时,我们很难确切地知道它是依据哪些输入特征、通过怎样的内部逻辑得出这个结论的。
</p>
<h4 class="font-bold text-lg mb-4 text-accent mt-6">高维张量操作的不可追踪性</h4>
<p class="text-secondary">
论文《Attention Is Not What You Need》深刻指出,Transformer的核心操作是一种<strong>"高维张量提升"</strong>,将每个token的d维隐藏状态向量提升到一个L×L的成对兼容性张量空间。
<a href="https://arxiv.org/pdf/2512.19428" target="_blank" class="text-accent hover:underline">
<sup class="text-xs">[72]</sup>
</a>
</p>
</div>
<div class="bg-white rounded-lg shadow-sm p-6">
<h4 class="font-bold text-lg mb-4">问题的核心</h4>
<div class="space-y-4">
<div class="flex items-start">
<i class="fas fa-cube text-accent mt-1 mr-3"></i>
<div>
<p class="font-medium">高维张量空间</p>
<p class="text-sm text-secondary">L²个元素的成对交互空间</p>
</div>
</div>
<div class="flex items-start">
<i class="fas fa-random text-accent mt-1 mr-3"></i>
<div>
<p class="font-medium">自由度大</p>
<p class="text-sm text-secondary">多层多头中注意力张量云演化</p>
</div>
</div>
<div class="flex items-start">
<i class="fas fa-eye-slash text-accent mt-1 mr-3"></i>
<div>
<p class="font-medium">数学上不可追踪</p>
<p class="text-sm text-secondary">缺乏明确的不变量族描述全局效应</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Existing Solutions Section -->
<section id="existing-solutions" class="py-16 bg-white">
<div class="max-w-6xl mx-auto px-8">
<h2 class="font-serif text-3xl font-bold text-primary mb-12 text-center">现有替代方案综述</h2>
<div class="grid grid-cols-1 lg:grid-cols-2 gap-12">
<!-- Complexity Optimization -->
<div id="complexity-optimization">
<h3 class="font-serif text-2xl font-bold text-primary mb-8">针对L2平方复杂度的优化方案</h3>
<div class="space-y-6">
<div class="bg-muted rounded-lg p-6">
<h4 class="font-bold text-lg mb-3 text-accent">
<i class="fas fa-network-wired mr-2"></i>稀疏注意力
</h4>
<p class="text-secondary mb-3">
通过限制每个token只能关注到序列中的一小部分其他token,将计算复杂度降低到近线性水平。
<a href="https://juejin.cn/post/7556549862561841162" target="_blank" class="text-accent hover:underline">
<sup class="text-xs">[67]</sup>
</a>
</p>
<ul class="text-sm text-secondary space-y-1">
<li><strong>Longformer</strong>:滑动窗口注意力 + 全局注意力</li>
<li><strong>BigBird</strong>:局部注意力 + 全局注意力 + 随机注意力</li>
<li><strong>Reformer</strong>:局部敏感哈希(LSH)技术</li>
</ul>
</div>
<div class="bg-muted rounded-lg p-6">
<h4 class="font-bold text-lg mb-3 text-accent">
<i class="fas fa-chart-line mr-2"></i>线性注意力
</h4>
<p class="text-secondary mb-3">
使用核函数近似softmax注意力机制,通过矩阵乘法结合律改变计算顺序。
<a href="https://blog.csdn.net/weixin_42645636/article/details/134400088" target="_blank" class="text-accent hover:underline">
<sup class="text-xs">[68]</sup>
</a>
</p>
<ul class="text-sm text-secondary space-y-1">
<li><strong>Linformer</strong>:低秩投影近似</li>
<li><strong>Performer</strong>:FAVOR+方法</li>
<li><strong>FlashAttention</strong>:IO感知精确计算优化</li>
</ul>
</div>
</div>
</div>
<!-- Interpretability Solutions -->
<div id="interpretability-solutions">
<h3 class="font-serif text-2xl font-bold text-primary mb-8">针对"黑盒"问题的解决方案</h3>
<div class="space-y-6">
<div class="bg-muted rounded-lg p-6">
<h4 class="font-bold text-lg mb-3 text-accent">
<i class="fas fa-box-open mr-2"></i>白盒化Transformer架构
</h4>
<p class="text-secondary mb-3">
从根本上设计本身就具备可解释性的"白盒"模型,如CRATE(Coding and Rate Reduction Transformer)。
<a href="https://hub.baai.ac.cn/view/32962" target="_blank" class="text-accent hover:underline">
<sup class="text-xs">[63]</sup>
</a>
</p>
<div class="bg-white rounded p-3 text-sm text-secondary">
<strong>CRATE特点:</strong>每一层都有明确的数学目标,即最大化编码率降低(Rate Reduction)
</div>
</div>
<div class="bg-muted rounded-lg p-6">
<h4 class="font-bold text-lg mb-3 text-accent">
<i class="fas fa-shapes mr-2"></i>基于几何或物理原理的模型设计
</h4>
<p class="text-secondary mb-3">
将深度学习模型建立在更坚实的数学或物理基础之上,与具有明确几何或物理意义的操作联系起来。
</p>
<div class="bg-white rounded p-3 text-sm text-secondary">
<strong>核心理念:</strong>从难以追踪的高维张量操作,转变为在具有明确数学结构的流形上的演化过程
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- New Model Analysis Section -->
<section id="new-model-analysis" class="py-16 bg-gradient-to-br from-slate-50 to-blue-50">
<div class="max-w-6xl mx-auto px-8">
<h2 class="font-serif text-3xl font-bold text-primary mb-12 text-center">新模型分析:Causal Grassmann Transformer</h2>
<!-- Core Ideas -->
<div id="core-ideas" class="mb-16">
<h3 class="font-serif text-2xl font-bold text-primary mb-8">论文《Attention Is Not What You Need》核心思想</h3>
<div class="bg-white rounded-lg shadow-lg p-8 mb-8">
<div class="grid grid-cols-1 lg:grid-cols-2 gap-8">
<div>
<h4 class="font-bold text-lg mb-4 text-accent">提出无注意力机制的序列模型</h4>
<p class="text-secondary mb-4">
该论文的根本性问题是:<strong>显式的L×L自注意力权重张量,是否真的是实现强大序列建模和推理能力所必需的根本要素?</strong>
<a href="https://arxiv.org/pdf/2512.19428" target="_blank" class="text-accent hover:underline">
<sup class="text-xs">[72]</sup>
</a>
</p>
<div class="bg-accent/10 rounded-lg p-4">
<p class="text-accent font-medium">
作者的答案是否定的。他们认为注意力机制只是实现隐藏表示几何演化的一种特定实现。
</p>
</div>
</div>
<div>
<h4 class="font-bold text-lg mb-4 text-accent">基于Grassmann流形的几何方法</h4>
<p class="text-secondary mb-4">
<strong>Grassmann流形Gr(k, n)</strong>是所有n维向量空间中k维子空间的集合。模型将token的隐藏状态解释为流形上的点。
</p>
<div class="space-y-2 text-sm text-secondary">
<div class="flex items-center">
<i class="fas fa-arrow-right text-accent mr-2"></i>
<span>将token的高维隐藏状态降维到低维空间</span>
</div>
<div class="flex items-center">
<i class="fas fa-arrow-right text-accent mr-2"></i>
<span>选取局部token对张成二维子空间</span>
</div>
<div class="flex items-center">
<i class="fas fa-arrow-right text-accent mr-2"></i>
<span>在Gr(2, r)流形上进行几何操作</span>
</div>
</div>
</div>
</div>
</div>
<!-- Architecture Diagram -->
<div class="bg-white rounded-lg shadow-lg p-8">
<h4 class="font-bold text-lg mb-6 text-center">Causal Grassmann Transformer架构对比</h4>
<div class="mermaid-container">
<div class="mermaid-controls">
<button class="mermaid-control-btn zoom-in" title="放大">
<i class="fas fa-search-plus"></i>
</button>
<button class="mermaid-control-btn zoom-out" title="缩小">
<i class="fas fa-search-minus"></i>
</button>
<button class="mermaid-control-btn reset-zoom" title="重置">
<i class="fas fa-expand-arrows-alt"></i>
</button>
<button class="mermaid-control-btn fullscreen" title="全屏查看">
<i class="fas fa-expand"></i>
</button>
</div>
<div class="mermaid" id="architecture-diagram">
graph TB
subgraph Traditional["传统Transformer架构"]
T1["输入序列"] --> T2["词嵌入"]
T2 --> T3["位置编码"]
T3 --> T4["多头自注意力"]
T4 --> T5["前馈网络"]
T5 --> T6["输出"]
end
subgraph Grassmann["Causal Grassmann Transformer"]
G1["输入序列"] --> G2["词嵌入"]
G2 --> G3["位置编码"]
G3 --> G4["降维投影"]
G4 --> G5["子空间构建"]
G5 --> G6["Plücker嵌入"]
G6 --> G7["门控融合"]
G7 --> G8["输出"]
end
style Traditional fill:#f1f5f9,stroke:#374151,stroke-width:2px
style Grassmann fill:#f0fdfa,stroke:#0f766e,stroke-width:2px
style T4 fill:#fee2e2,stroke:#dc2626,stroke-width:2px
style G5 fill:#d1fae5,stroke:#059669,stroke-width:2px
style G6 fill:#d1fae5,stroke:#059669,stroke-width:2px
</div>
</div>
</div>
</div>
<!-- Model Design -->
<div id="model-design" class="mb-16">
<h3 class="font-serif text-2xl font-bold text-primary mb-8">模型设计与机制</h3>
<div class="grid grid-cols-1 lg:grid-cols-3 gap-8 mb-8">
<div class="bg-white rounded-lg shadow-sm p-6">
<h4 class="font-bold text-lg mb-4 text-accent">
<i class="fas fa-compress-arrows-alt mr-2"></i>降维投影
</h4>
<p class="text-secondary mb-4">
将输入序列的每个token的d维隐藏状态h_t通过可学习的线性变换W_down ∈ R^(d×r)投影到r维的低维空间。
</p>
<div class="bg-muted rounded p-3 text-sm">
<code>z_t = h_t W_down</code>
</div>
</div>
<div class="bg-white rounded-lg shadow-sm p-6">
<h4 class="font-bold text-lg mb-4 text-accent">
<i class="fas fa-shapes mr-2"></i>子空间构建
</h4>
<p class="text-secondary mb-4">
在局部因果性窗口内,选取token对(i,j),将对应的低维向量z_i和z_j组合成2×r矩阵。
</p>
<div class="bg-muted rounded p-3 text-sm">
矩阵的行空间定义了Gr(2, r)上的二维子空间
</div>
</div>
<div class="bg-white rounded-lg shadow-sm p-6">
<h4 class="font-bold text-lg mb-4 text-accent">
<i class="fas fa-project-diagram mr-2"></i>Plücker嵌入
</h4>
<p class="text-secondary mb-4">
使用Plücker坐标将子空间嵌入到射影空间,通过对2×r矩阵的两行进行外积运算得到。
</p>
<div class="bg-muted rounded p-3 text-sm">
结果是一个反对称的r×r矩阵,可展平为长度为r(r-1)/2的向量
</div>
</div>
</div>
<!-- Geometric Interpretation -->
<div class="bg-white rounded-lg shadow-lg p-8">
<h4 class="font-bold text-lg mb-6 text-center">几何解释与可解释性</h4>
<div class="grid grid-cols-1 lg:grid-cols-2 gap-8">
<div>
<img src="https://kimi-web-img.moonshot.cn/img/moonlight-paper-snapshot.s3.ap-northeast-2.amazonaws.com/5d0b59bd6de29569a8101f8c51ba0dc2749e9ada.png" alt="Grassmann流形上的几何变换示意图" class="w-full h-48 object-cover rounded-lg shadow-md" size="medium" aspect="wide" color="teal" style="clipart" query="Grassmann流形几何变换" referrerpolicy="no-referrer" data-modified="1" data-score="0.00"/>
</div>
<div class="space-y-4">
<div class="bg-accent/10 rounded-lg p-4">
<h5 class="font-bold text-accent mb-2">从"高维张量提升"到"低维几何演化"</h5>
<p class="text-sm text-secondary">
通过将token状态降维到低维空间再进行几何操作,模型的核心机制从一个难以分析的"黑盒"张量空间,转移到了一个数学上结构清晰、性质明确的流形上。
<a href="https://arxiv.org/pdf/2512.19428" target="_blank" class="text-accent hover:underline">
<sup class="text-xs">[72]</sup>
</a>
</p>
</div>
<div class="space-y-2 text-sm text-secondary">
<div class="flex items-center">
<i class="fas fa-check text-accent mr-2"></i>
<span>可控的r维空间分析子空间形变</span>
</div>
<div class="flex items-center">
<i class="fas fa-check text-accent mr-2"></i>
<span>追踪信息在模型中的流动路径</span>
</div>
<div class="flex items-center">
<i class="fas fa-check text-accent mr-2"></i>
<span>基于明确几何变换的模型核心</span>
</div>
</div>
</div>
</div>
</div>
</div>
<!-- Performance Analysis -->
<div id="performance-analysis">
<h3 class="font-serif text-2xl font-bold text-primary mb-8">复杂度与性能分析</h3>
<!-- Complexity Comparison -->
<div class="bg-white rounded-lg shadow-lg p-8 mb-8">
<h4 class="font-bold text-lg mb-6 text-center">复杂度对比分析</h4>
<div class="grid grid-cols-1 md:grid-cols-3 gap-6 mb-6">
<div class="text-center">
<div class="text-3xl font-bold text-red-600 mb-2">O(n²·d)</div>
<p class="font-medium mb-2">标准Transformer</p>
<p class="text-sm text-secondary">自注意力机制</p>
</div>
<div class="text-center">
<div class="text-3xl font-bold text-orange-600 mb-2">O(n·log n)</div>
<p class="font-medium mb-2">稀疏注意力</p>
<p class="text-sm text-secondary">Longformer/BigBird</p>
</div>
<div class="text-center">
<div class="text-3xl font-bold text-accent mb-2">O(n)</div>
<p class="font-medium mb-2">Causal Grassmann</p>
<p class="text-sm text-secondary">线性复杂度</p>
</div>
</div>
<div class="bg-muted rounded-lg p-4">
<p class="text-secondary text-sm">
<strong>复杂度分析:</strong>Causal Grassmann Transformer在固定子空间秩r的情况下,计算复杂度随序列长度L线性增长。
<a href="https://arxiv.org/pdf/2512.19428" target="_blank" class="text-accent hover:underline">
<sup class="text-xs">[72]</sup>
</a>
</p>
</div>
</div>
<!-- Performance Comparison Table -->
<div class="bg-white rounded-lg shadow-lg p-8">
<h4 class="font-bold text-lg mb-6 text-center">实验结果:与标准Transformer的性能对比</h4>
<div class="overflow-x-auto">
<table class="w-full text-sm">
<thead class="bg-muted">
<tr>
<th class="text-left p-3 font-medium">任务</th>
<th class="text-left p-3 font-medium">数据集</th>
<th class="text-left p-3 font-medium">模型</th>
<th class="text-left p-3 font-medium">性能指标</th>
<th class="text-left p-3 font-medium">结果</th>
<th class="text-left p-3 font-medium">对比</th>
</tr>
</thead>
<tbody class="divide-y divide-gray-200">
<tr>
<td class="p-3">语言建模</td>
<td class="p-3">Wikitext-2</td>
<td class="p-3">Causal Grassmann LM</td>
<td class="p-3">验证集困惑度</td>
<td class="p-3">与基线差距10-15%</td>
<td class="p-3 text-accent">性能接近,证明可行性</td>
</tr>
<tr>
<td class="p-3">自然语言推理</td>
<td class="p-3">SNLI</td>
<td class="p-3">DistilBERT + Grassmann Head</td>
<td class="p-3">验证集准确率</td>
<td class="p-3 font-bold text-accent">0.8550</td>
<td class="p-3 text-accent font-medium">优于Transformer (0.8545)</td>
</tr>
<tr>
<td class="p-3">自然语言推理</td>
<td class="p-3">SNLI</td>
<td class="p-3">DistilBERT + Grassmann Head</td>
<td class="p-3">测试集准确率</td>
<td class="p-3 font-bold text-accent">0.8538</td>
<td class="p-3 text-accent font-medium">优于Transformer (0.8511)</td>
</tr>
</tbody>
</table>
</div>
<p class="text-secondary text-sm mt-4">
数据来源:<a href="https://arxiv.org/pdf/2512.19428" target="_blank" class="text-accent hover:underline">
《Attention Is Not What You Need》论文实验结果
<sup class="text-xs">[72]</sup>
</a>
</p>
</div>
</div>
</div>
</section>
<!-- Conclusion Section -->
<section id="conclusion" class="py-16 bg-primary text-white">
<div class="max-w-6xl mx-auto px-8">
<h2 class="font-serif text-3xl font-bold mb-12 text-center">结论与展望</h2>
<div class="grid grid-cols-1 lg:grid-cols-2 gap-12 mb-12">
<!-- Comprehensive Solution -->
<div>
<h3 class="font-serif text-2xl font-bold mb-6">综合解决方案的潜力</h3>
<div class="space-y-6">
<div class="bg-white/10 rounded-lg p-6">
<h4 class="font-bold text-lg mb-3 text-accent">
<i class="fas fa-bolt mr-2"></i>同时解决复杂度和可解释性问题
</h4>
<p class="text-white/90 mb-4">
Causal Grassmann Transformer通过将token交互从计算昂贵的矩阵代数转换到几何意义明确的Grassmann流形上,实现了双重突破。
</p>
<ul class="text-white/80 text-sm space-y-1">
<li>• 计算复杂度从O(n²)降低到O(n)</li>
<li>• 内在可解释性的几何架构</li>
<li>• "一石二鸟"的设计思路</li>
</ul>
</div>
<div class="bg-white/10 rounded-lg p-6">
<h4 class="font-bold text-lg mb-3 text-accent">
<i class="fas fa-balance-scale mr-2"></i>优势与局限性
</h4>
<div class="grid grid-cols-2 gap-4 text-sm">
<div>
<p class="font-medium mb-2">优势:</p>
<ul class="text-white/80 space-y-1">
<li>• 线性复杂度</li>
<li>• 更好的可解释性</li>
<li>• SNLI任务表现优异</li>
</ul>
</div>
<div>
<p class="font-medium mb-2">局限性:</p>
<ul class="text-white/80 space-y-1">
<li>• 语言建模性能有差距</li>
<li>• 训练稳定性待验证</li>
<li>• 实现复杂度较高</li>
</ul>
</div>
</div>
</div>
</div>
</div>
<!-- Future Directions -->
<div>
<h3 class="font-serif text-2xl font-bold mb-6">未来研究方向</h3>
<div class="space-y-6">
<div class="bg-white/10 rounded-lg p-6">
<h4 class="font-bold text-lg mb-3 text-accent">
<i class="fas fa-rocket mr-2"></i>无注意力机制模型的发展
</h4>
<p class="text-white/90 mb-4">
Causal Grassmann Transformer的成功证明了"无注意力"序列建模的可行性,将激励更多研究者跳出注意力机制的框架。
</p>
<div class="grid grid-cols-1 sm:grid-cols-2 gap-3 text-sm text-white/80">
<div>• 不同几何流形探索</div>
<div>• 子空间表示方法</div>
<div>• 几何深度学习结合</div>
<div>• 状态空间模型融合</div>
</div>
</div>
<div class="bg-white/10 rounded-lg p-6">
<h4 class="font-bold text-lg mb-3 text-accent">
<i class="fas fa-shapes mr-2"></i>几何深度学习的应用前景
</h4>
<p class="text-white/90 mb-4">
该模型是几何深度学习思想在序列建模领域的成功应用,为将其他几何和拓扑工具引入深度学习提供了范例。
</p>
<div class="space-y-3 text-sm text-white/80">
<div class="flex items-center">
<i class="fas fa-circle text-accent mr-2 text-xs"></i>
<span>李群、图流形等复杂几何结构</span>
</div>
<div class="flex items-center">
<i class="fas fa-circle text-accent mr-2 text-xs"></i>
<span>拓扑数据分析(TDA)方法</span>
</div>
<div class="flex items-center">
<i class="fas fa-circle text-accent mr-2 text-xs"></i>
<span>破解神经网络"黑盒"问题</span>
</div>
</div>
</div>
</div>
</div>
</div>
<!-- Final Quote -->
<div class="text-center">
<blockquote class="text-xl italic font-serif max-w-4xl mx-auto leading-relaxed">
"Causal Grassmann Transformer的出现,为解决Transformer的固有缺陷提供了一个极具潜力的综合解决方案,标志着序列建模领域开始从'注意力中心论'向更多元化的几何方法探索。"
</blockquote>
</div>
</div>
</section>
</main>
<script>
// Initialize Mermaid with enhanced theme and contrast
mermaid.initialize({
startOnLoad: true,
theme: 'base',
themeVariables: {
// Primary colors with high contrast
primaryColor: '#f8fafc',
primaryTextColor: '#1f2937',
primaryBorderColor: '#1e293b',
// Secondary colors
secondaryColor: '#f1f5f9',
secondaryTextColor: '#374151',
secondaryBorderColor: '#64748b',
// Tertiary colors
tertiaryColor: '#e2e8f0',
tertiaryTextColor: '#475569',
tertiaryBorderColor: '#94a3b8',
// Additional node colors for better contrast
primaryColorLight: '#f8fafc',
primaryColorDark: '#0f766e',
// Line and background colors
lineColor: '#64748b',
background: '#ffffff',
// Main contrast text
mainBkg: '#f8fafc',
secondBkg: '#f1f5f9',
tertiaryBkg: '#e2e8f0',
// Text contrast
textColor: '#1f2937',
darkTextColor: '#ffffff',
// Node styling
nodeBkg: '#f8fafc',
nodeTextColor: '#1f2937',
nodeBorder: '#1e293b',
// Special node colors
specialColor: '#0f766e',
specialTextColor: '#ffffff',
specialBorderColor: '#0d5f58',
// Alternative node colors
altBackground: '#fef3c7',
altBorder: '#f59e0b',
altText: '#92400e',
// Error/warning colors
errorBkgColor: '#fee2e2',
errorTextColor: '#dc2626',
errorBorderColor: '#dc2626',
// Success colors
successBkgColor: '#d1fae5',
successTextColor: '#059669',
successBorderColor: '#059669',
// Info colors
infoBkgColor: '#dbeafe',
infoTextColor: '#2563eb',
infoBorderColor: '#2563eb'
},
flowchart: {
useMaxWidth: false,
htmlLabels: true,
curve: 'basis',
padding: 20
},
fontFamily: 'Inter, sans-serif',
fontSize: 14
});
// Initialize Mermaid Controls for zoom and pan
function initializeMermaidControls() {
const containers = document.querySelectorAll('.mermaid-container');
containers.forEach(container => {
const mermaidElement = container.querySelector('.mermaid');
let scale = 1;
let isDragging = false;
let startX, startY, translateX = 0, translateY = 0;
// 触摸相关状态
let isTouch = false;
let touchStartTime = 0;
let initialDistance = 0;
let initialScale = 1;
let isPinching = false;
// Zoom controls
const zoomInBtn = container.querySelector('.zoom-in');
const zoomOutBtn = container.querySelector('.zoom-out');
const resetBtn = container.querySelector('.reset-zoom');
const fullscreenBtn = container.querySelector('.fullscreen');
function updateTransform() {
mermaidElement.style.transform = `translate(${translateX}px, ${translateY}px) scale(${scale})`;
if (scale > 1) {
container.classList.add('zoomed');
} else {
container.classList.remove('zoomed');
}
mermaidElement.style.cursor = isDragging ? 'grabbing' : 'grab';
}
if (zoomInBtn) {
zoomInBtn.addEventListener('click', () => {
scale = Math.min(scale * 1.25, 4);
updateTransform();
});
}
if (zoomOutBtn) {
zoomOutBtn.addEventListener('click', () => {
scale = Math.max(scale / 1.25, 0.3);
if (scale <= 1) {
translateX = 0;
translateY = 0;
}
updateTransform();
});
}
if (resetBtn) {
resetBtn.addEventListener('click', () => {
scale = 1;
translateX = 0;
translateY = 0;
updateTransform();
});
}
if (fullscreenBtn) {
fullscreenBtn.addEventListener('click', () => {
if (container.requestFullscreen) {
container.requestFullscreen();
} else if (container.webkitRequestFullscreen) {
container.webkitRequestFullscreen();
} else if (container.msRequestFullscreen) {
container.msRequestFullscreen();
}
});
}
// Mouse Events
mermaidElement.addEventListener('mousedown', (e) => {
if (isTouch) return; // 如果是触摸设备,忽略鼠标事件
isDragging = true;
startX = e.clientX - translateX;
startY = e.clientY - translateY;
mermaidElement.style.cursor = 'grabbing';
updateTransform();
e.preventDefault();
});
document.addEventListener('mousemove', (e) => {
if (isDragging && !isTouch) {
translateX = e.clientX - startX;
translateY = e.clientY - startY;
updateTransform();
}
});
document.addEventListener('mouseup', () => {
if (isDragging && !isTouch) {
isDragging = false;
mermaidElement.style.cursor = 'grab';
updateTransform();
}
});
document.addEventListener('mouseleave', () => {
if (isDragging && !isTouch) {
isDragging = false;
mermaidElement.style.cursor = 'grab';
updateTransform();
}
});
// 获取两点之间的距离
function getTouchDistance(touch1, touch2) {
return Math.hypot(
touch2.clientX - touch1.clientX,
touch2.clientY - touch1.clientY
);
}
// Touch Events - 触摸事件处理
mermaidElement.addEventListener('touchstart', (e) => {
isTouch = true;
touchStartTime = Date.now();
if (e.touches.length === 1) {
// 单指拖动
isPinching = false;
isDragging = true;
const touch = e.touches[0];
startX = touch.clientX - translateX;
startY = touch.clientY - translateY;
} else if (e.touches.length === 2) {
// 双指缩放
isPinching = true;
isDragging = false;
const touch1 = e.touches[0];
const touch2 = e.touches[1];
initialDistance = getTouchDistance(touch1, touch2);
initialScale = scale;
}
e.preventDefault();
}, { passive: false });
mermaidElement.addEventListener('touchmove', (e) => {
if (e.touches.length === 1 && isDragging && !isPinching) {
// 单指拖动
const touch = e.touches[0];
translateX = touch.clientX - startX;
translateY = touch.clientY - startY;
updateTransform();
} else if (e.touches.length === 2 && isPinching) {
// 双指缩放
const touch1 = e.touches[0];
const touch2 = e.touches[1];
const currentDistance = getTouchDistance(touch1, touch2);
if (initialDistance > 0) {
const newScale = Math.min(Math.max(
initialScale * (currentDistance / initialDistance),
0.3
), 4);
scale = newScale;
updateTransform();
}
}
e.preventDefault();
}, { passive: false });
mermaidElement.addEventListener('touchend', (e) => {
// 重置状态
if (e.touches.length === 0) {
isDragging = false;
isPinching = false;
initialDistance = 0;
// 延迟重置isTouch,避免鼠标事件立即触发
setTimeout(() => {
isTouch = false;
}, 100);
} else if (e.touches.length === 1 && isPinching) {
// 从双指变为单指,切换为拖动模式
isPinching = false;
isDragging = true;
const touch = e.touches[0];
startX = touch.clientX - translateX;
startY = touch.clientY - translateY;
}
updateTransform();
});
mermaidElement.addEventListener('touchcancel', (e) => {
isDragging = false;
isPinching = false;
initialDistance = 0;
setTimeout(() => {
isTouch = false;
}, 100);
updateTransform();
});
// Enhanced wheel zoom with better center point handling
container.addEventListener('wheel', (e) => {
e.preventDefault();
const rect = container.getBoundingClientRect();
const centerX = rect.width / 2;
const centerY = rect.height / 2;
const delta = e.deltaY > 0 ? 0.9 : 1.1;
const newScale = Math.min(Math.max(scale * delta, 0.3), 4);
// Adjust translation to zoom towards center
if (newScale !== scale) {
const scaleDiff = newScale / scale;
translateX = translateX * scaleDiff;
translateY = translateY * scaleDiff;
scale = newScale;
if (scale <= 1) {
translateX = 0;
translateY = 0;
}
updateTransform();
}
});
// Initialize display
updateTransform();
});
}
// Initialize the controls when the DOM is loaded
document.addEventListener('DOMContentLoaded', function() {
initializeMermaidControls();
});
// Smooth scrolling for navigation links
document.querySelectorAll('a[href^="#"]').forEach(anchor => {
anchor.addEventListener('click', function (e) {
e.preventDefault();
const target = document.querySelector(this.getAttribute('href'));
if (target) {
target.scrollIntoView({
behavior: 'smooth',
block: 'start'
});
// Close TOC on mobile after clicking a link
if (window.innerWidth < 1024) {
document.getElementById('toc-nav').classList.add('-translate-x-full');
}
}
});
});
// Toggle TOC visibility on mobile
document.getElementById('toc-toggle').addEventListener('click', function() {
document.getElementById('toc-nav').classList.toggle('-translate-x-full');
});
// Close TOC on mobile
document.getElementById('toc-close').addEventListener('click', function() {
document.getElementById('toc-nav').classList.add('-translate-x-full');
});
// Highlight active section in navigation
const observerOptions = {
root: null,
rootMargin: '-20% 0px -70% 0px',
threshold: 0
};
const observer = new IntersectionObserver((entries) => {
entries.forEach(entry => {
const id = entry.target.getAttribute('id');
const navLink = document.querySelector(`a[href="#${id}"]`);
if (entry.isIntersecting) {
// Remove active class from all links
document.querySelectorAll('nav a').forEach(link => {
link.classList.remove('text-accent', 'font-medium');
link.classList.add('text-secondary');
});
// Add active class to current link
if (navLink) {
navLink.classList.remove('text-secondary');
navLink.classList.add('text-accent', 'font-medium');
}
}
});
}, observerOptions);
// Observe all sections
document.querySelectorAll('section[id]').forEach(section => {
observer.observe(section);
});
</script>
</body></html>
登录后可参与表态
讨论回复
1 条回复
✨步子哥 (steper)
#1
12-31 04:32
登录后可参与表态