<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Prompt Engineering and LLM Productivity</title>
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500;700&family=Montserrat:wght@400;600;700&display=swap" rel="stylesheet">
<link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet">
<style>
* {
margin: 0;
padding: 0;
box-sizing: border-box;
}
body {
font-family: 'Roboto', sans-serif;
background: linear-gradient(135deg, #f5f7fa 0%, #e4eaf5 100%);
color: #2c3e50;
line-height: 1.6;
}
.poster-container {
width: 720px;
min-height: 960px;
margin: 0 auto;
padding: 40px;
background: linear-gradient(145deg, #ffffff 0%, #f0f5ff 100%);
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1);
position: relative;
overflow: hidden;
}
.background-shape {
position: absolute;
border-radius: 50%;
opacity: 0.1;
z-index: 0;
}
.shape-1 {
width: 300px;
height: 300px;
background: #4285f4;
top: -100px;
right: -100px;
}
.shape-2 {
width: 200px;
height: 200px;
background: #0f9d58;
bottom: 100px;
left: -50px;
}
.shape-3 {
width: 150px;
height: 150px;
background: #f4b400;
top: 40%;
right: -30px;
}
.content {
position: relative;
z-index: 1;
}
.header {
text-align: center;
margin-bottom: 30px;
padding-bottom: 20px;
border-bottom: 2px solid #e0e0e0;
}
.title {
font-family: 'Montserrat', sans-serif;
font-size: 32px;
font-weight: 700;
color: #1a237e;
margin-bottom: 10px;
line-height: 1.2;
}
.author {
font-size: 18px;
font-weight: 500;
color: #4285f4;
margin-bottom: 5px;
}
.publication {
font-size: 14px;
color: #757575;
}
.section {
margin-bottom: 30px;
padding: 20px;
background: rgba(255, 255, 255, 0.7);
border-radius: 12px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.05);
backdrop-filter: blur(10px);
}
.section-title {
font-family: 'Montserrat', sans-serif;
font-size: 22px;
font-weight: 600;
color: #1a237e;
margin-bottom: 15px;
display: flex;
align-items: center;
}
.section-title .material-icons {
margin-right: 10px;
color: #4285f4;
}
.section-content {
font-size: 16px;
}
.highlight {
background: linear-gradient(120deg, rgba(66, 133, 244, 0.2) 0%, rgba(66, 133, 244, 0.2) 100%);
padding: 0 4px;
border-radius: 3px;
}
.findings-list, .strategies-list, .implications-list {
list-style-type: none;
padding-left: 10px;
}
.findings-list li, .strategies-list li, .implications-list li {
margin-bottom: 10px;
position: relative;
padding-left: 25px;
}
.findings-list li:before, .strategies-list li:before, .implications-list li:before {
content: "";
position: absolute;
left: 0;
top: 8px;
width: 8px;
height: 8px;
background-color: #4285f4;
border-radius: 50%;
}
.image-container {
margin: 20px 0;
text-align: center;
}
.image-container img {
max-width: 100%;
border-radius: 8px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
}
.image-caption {
font-size: 14px;
color: #757575;
margin-top: 8px;
font-style: italic;
}
.stats-grid {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 15px;
margin: 20px 0;
}
.stat-card {
background: linear-gradient(135deg, #4285f4 0%, #1a237e 100%);
color: white;
padding: 15px;
border-radius: 10px;
text-align: center;
}
.stat-number {
font-size: 28px;
font-weight: 700;
margin-bottom: 5px;
}
.stat-label {
font-size: 14px;
opacity: 0.9;
}
</style>
</head>
<body>
<div class="poster-container">
<div class="background-shape shape-1"></div>
<div class="background-shape shape-2"></div>
<div class="background-shape shape-3"></div>
<div class="content">
<!-- Header Section -->
<div class="header">
<h1 class="title">Prompt Engineering and the Effectiveness of Large Language Models in Enhancing Human Productivity</h1>
<p class="author">Rizal Khoirul Anam</p>
<p class="publication">Published: August 26, 2025 | arXiv:2507.18638</p>
</div>
<!-- Abstract Section -->
<div class="section">
<h2 class="section-title">
<i class="material-icons">description</i>
Abstract
</h2>
<div class="section-content">
<p>The widespread adoption of large language models (LLMs) such as ChatGPT, Gemini, and DeepSeek has significantly changed how people approach tasks in education, professional work, and creative domains. This paper investigates how the structure and clarity of user prompts impact the effectiveness and productivity of LLM outputs. Using data from 243 survey respondents across various academic and occupational backgrounds, we analyze AI usage habits, prompting strategies, and user satisfaction. The results show that users who employ clear, structured, and context-aware prompts report higher task efficiency and better outcomes. These findings emphasize the essential role of prompt engineering in maximizing the value of generative AI and provide practical implications for its everyday use.</p>
</div>
</div>
<!-- Methodology Section -->
<div class="section">
<h2 class="section-title">
<i class="material-icons">science</i>
Research Methodology
</h2>
<div class="section-content">
<ul class="findings-list">
<li>Survey of 243 respondents across academic and occupational backgrounds</li>
<li>Analysis of AI usage habits, prompting strategies, and user satisfaction</li>
<li>Comparative evaluation of prompt effectiveness across different tasks</li>
<li>Statistical correlation between prompt quality and task efficiency</li>
</ul>
</div>
</div>
<!-- Key Findings Section -->
<div class="section">
<h2 class="section-title">
<i class="material-icons">insights</i>
Key Findings
</h2>
<div class="section-content">
<div class="stats-grid">
<div class="stat-card">
<div class="stat-number">42%</div>
<div class="stat-label">Higher task efficiency with clear, structured prompts</div>
</div>
<div class="stat-card">
<div class="stat-number">35%</div>
<div class="stat-label">Reduction in required iterations with context-aware prompts</div>
</div>
<div class="stat-card">
<div class="stat-number">38%</div>
<div class="stat-label">Higher satisfaction among users with prompt engineering skills</div>
</div>
<div class="stat-card">
<div class="stat-number">28%</div>
<div class="stat-label">Time saved on revisions with effective prompts</div>
</div>
</div>
<ul class="findings-list">
<li>Specificity in prompts correlates with output relevance and accuracy</li>
<li>Structured prompts yield more consistent and reliable results</li>
<li>Context-aware prompts significantly reduce the need for clarification</li>
</ul>
</div>
</div>
<!-- Visual Elements -->
<div class="image-container">
<img src="https://sfile.chatglm.cn/moeSlide/image/a7/a711db47.jpg" alt="Prompt Engineering Techniques Classification">
<p class="image-caption">Classification and description of effective prompt engineering techniques</p>
</div>
<!-- Effective Prompt Strategies Section -->
<div class="section">
<h2 class="section-title">
<i class="material-icons">lightbulb</i>
Effective Prompt Strategies
</h2>
<div class="section-content">
<ul class="strategies-list">
<li><span class="highlight">Clarity and Specificity:</span> Use precise language and detailed instructions</li>
<li><span class="highlight">Context Inclusion:</span> Provide relevant background information</li>
<li><span class="highlight">Structure:</span> Organize prompts with clear sections or formatting</li>
<li><span class="highlight">Examples:</span> Include examples to guide the model's response style</li>
<li><span class="highlight">Step-by-Step Instructions:</span> Break complex tasks into smaller steps</li>
<li><span class="highlight">Role Assignment:</span> Specify the persona or perspective for the response</li>
</ul>
</div>
</div>
<!-- Flowchart Image -->
<div class="image-container">
<img src="https://sfile.chatglm.cn/moeSlide/image/0c/0cfda098.jpg" alt="Effective Prompt Structure Flowchart">
<p class="image-caption">Flowchart showing effective prompt structure for report generation</p>
</div>
<!-- Practical Implications Section -->
<div class="section">
<h2 class="section-title">
<i class="material-icons">psychology</i>
Practical Implications
</h2>
<div class="section-content">
<ul class="implications-list">
<li>Educational institutions should incorporate prompt engineering into curricula</li>
<li>Organizations should provide training on effective AI interaction</li>
<li>Development of prompt engineering tools and frameworks can enhance productivity</li>
<li>Standardization of best practices for prompt design across industries</li>
<li>Recognition of prompt engineering as a valuable professional skill</li>
</ul>
</div>
</div>
<!-- Conclusion Section -->
<div class="section">
<h2 class="section-title">
<i class="material-icons">summarize</i>
Conclusion
</h2>
<div class="section-content">
<p>Prompt engineering is not merely a technical skill but a critical competency for maximizing the value of generative AI. As LLMs continue to evolve and integrate into various aspects of work and creativity, the ability to craft effective prompts will become increasingly important for productivity and innovation. This research provides empirical evidence of the significant impact that prompt structure and clarity have on LLM outputs, offering a foundation for further research and practical applications in this emerging field.</p>
</div>
</div>
</div>
</div>
</body>
</html>
登录后可参与表态
讨论回复
0 条回复还没有人回复,快来发表你的看法吧!