Loading...
正在加载...
请稍候

Large Language Model Prompt Datasets: An In-depth Analysis and Insights

未知用户 (steper) 2025年12月11日 03:49
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Large Language Model Prompt Datasets: An In-depth Analysis and Insights</title> <link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500;700&family=Roboto+Slab:wght@400;700&display=swap" rel="stylesheet"> <link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet"> <style> :root { --primary: #1565C0; --primary-light: #5e92f3; --primary-dark: #003c8f; --secondary: #26A69A; --secondary-light: #64D8CB; --secondary-dark: #00766C; --text-on-primary: #ffffff; --text-primary: #212121; --text-secondary: #757575; --background: #f5f7fa; --card-bg: #ffffff; --accent: #FF5722; } * { margin: 0; padding: 0; box-sizing: border-box; } body { font-family: 'Roboto', sans-serif; color: var(--text-primary); background-color: var(--background); line-height: 1.6; } .poster-container { width: 720px; min-height: 960px; margin: 0 auto; padding: 40px; background: linear-gradient(135deg, #e3f2fd, #bbdefb); position: relative; overflow: hidden; } .poster-container::before { content: ""; position: absolute; top: -150px; right: -150px; width: 400px; height: 400px; border-radius: 50%; background: radial-gradient(circle, rgba(38, 166, 154, 0.2) 0%, rgba(38, 166, 154, 0) 70%); z-index: 0; } .poster-container::after { content: ""; position: absolute; bottom: -100px; left: -100px; width: 300px; height: 300px; border-radius: 50%; background: radial-gradient(circle, rgba(21, 101, 192, 0.2) 0%, rgba(21, 101, 192, 0) 70%); z-index: 0; } .header { text-align: center; margin-bottom: 30px; position: relative; z-index: 1; } .title { font-family: 'Roboto Slab', serif; font-size: 40px; font-weight: 700; color: var(--primary-dark); margin-bottom: 15px; line-height: 1.2; } .authors { font-size: 18px; color: var(--text-secondary); margin-bottom: 5px; } .affiliations { font-size: 16px; color: var(--text-secondary); font-style: italic; margin-bottom: 5px; } .date { font-size: 16px; color: var(--text-secondary); } .section { background-color: var(--card-bg); border-radius: 12px; padding: 20px; margin-bottom: 25px; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08); position: relative; z-index: 1; } .section-title { font-family: 'Roboto Slab', serif; font-size: 24px; font-weight: 700; color: var(--primary); margin-bottom: 15px; display: flex; align-items: center; } .section-title .material-icons { margin-right: 10px; color: var(--primary); } .section-content { font-size: 16px; color: var(--text-primary); } .highlight { background-color: rgba(255, 235, 59, 0.3); padding: 0 3px; border-radius: 3px; } .stat-highlight { font-size: 22px; font-weight: 700; color: var(--secondary-dark); margin-right: 5px; } .data-sources { display: flex; flex-wrap: wrap; gap: 10px; margin-top: 10px; } .source-item { display: flex; align-items: center; background-color: rgba(38, 166, 154, 0.1); padding: 8px 12px; border-radius: 20px; font-size: 14px; } .source-item .material-icons { font-size: 18px; margin-right: 5px; color: var(--secondary); } .taxonomy-list { display: flex; flex-wrap: wrap; gap: 10px; margin-top: 10px; } .taxonomy-item { background-color: rgba(21, 101, 192, 0.1); padding: 8px 12px; border-radius: 8px; font-size: 14px; border-left: 4px solid var(--primary); } .analysis-levels { display: flex; justify-content: space-between; margin-top: 15px; } .analysis-level { flex: 1; text-align: center; padding: 10px; background-color: rgba(21, 101, 192, 0.05); border-radius: 8px; margin: 0 5px; } .analysis-level-title { font-weight: 500; color: var(--primary); margin-bottom: 5px; } .findings-list { margin-top: 10px; } .finding-item { display: flex; margin-bottom: 8px; } .finding-item .material-icons { color: var(--secondary); margin-right: 10px; flex-shrink: 0; } .optimization-diagram { display: flex; align-items: center; justify-content: space-between; margin: 20px 0; padding: 15px; background-color: rgba(255, 255, 255, 0.7); border-radius: 8px; border: 1px dashed var(--primary-light); } .diagram-step { text-align: center; flex: 1; } .diagram-step .material-icons { font-size: 36px; color: var(--primary); margin-bottom: 5px; } .diagram-arrow { color: var(--primary); font-size: 24px; } .resource-link { display: inline-flex; align-items: center; background-color: var(--primary); color: white; padding: 10px 15px; border-radius: 8px; text-decoration: none; margin-top: 10px; font-weight: 500; } .resource-link .material-icons { margin-right: 8px; } </style> </head> <body> <div class="poster-container"> <!-- Header Section --> <div class="header"> <h1 class="title">Large Language Model Prompt Datasets: An In-depth Analysis and Insights</h1> <p class="authors">Yuanming Zhang*, Yan Lin*, Arijit Khan†, Huaiyu Wan</p> <p class="affiliations">Beijing Jiaotong University, Aalborg University, Bowling Green State University</p> <p class="date">October 10, 2025</p> </div> <!-- Abstract/Introduction Section --> <div class="section"> <h2 class="section-title"> <span class="material-icons">description</span> Abstract </h2> <div class="section-content"> A prompt is a natural language instruction that defines a specific task for a large language model (LLM) and serves as the primary interface for human-LLM interaction. With the growing deployment of LLMs, diverse prompt datasets are emerging from platforms such as GitHub and social media. These datasets span a wide array of applications and content types, facilitating both broader LLM utilization and improved prompt engineering. </div> </div> <!-- Data Collection Section --> <div class="section"> <h2 class="section-title"> <span class="material-icons">storage</span> Data Collection </h2> <div class="section-content"> <p>Comprehensive collection of <span class="stat-highlight">1.22 TB</span> of data, comprising <span class="stat-highlight">673M+</span> prompt instances from <span class="stat-highlight">129</span> heterogeneous sources:</p> <div class="data-sources"> <div class="source-item"> <span class="material-icons">dataset</span> Dataset Platforms </div> <div class="source-item"> <span class="material-icons">school</span> Academic Publications </div> <div class="source-item"> <span class="material-icons">code</span> Public Repositories </div> <div class="source-item"> <span class="material-icons">forum</span> Social Media </div> </div> </div> </div> <!-- Taxonomy Section --> <div class="section"> <h2 class="section-title"> <span class="material-icons">account_tree</span> Taxonomy </h2> <div class="section-content"> <p>Hierarchical categorization of LLM prompt datasets by:</p> <div class="taxonomy-list"> <div class="taxonomy-item">Downstream Tasks</div> <div class="taxonomy-item">Languages</div> <div class="taxonomy-item">Engineering Techniques</div> <div class="taxonomy-item">Attributes</div> <div class="taxonomy-item">Modalities</div> </div> </div> </div> <!-- Analysis Methodology Section --> <div class="section"> <h2 class="section-title"> <span class="material-icons">analytics</span> Analysis Methodology </h2> <div class="section-content"> <p>Multi-level linguistic analysis across three dimensions on seven representative datasets:</p> <div class="analysis-levels"> <div class="analysis-level"> <div class="analysis-level-title">Lexical</div> <div>Token distribution, vocabulary analysis</div> </div> <div class="analysis-level"> <div class="analysis-level-title">Syntactic</div> <div>Dependency parsing, POS tagging, TF-IDF</div> </div> <div class="analysis-level"> <div class="analysis-level-title">Semantic</div> <div>Topic modeling, semantic similarity</div> </div> </div> </div> </div> <!-- Key Findings Section --> <div class="section"> <h2 class="section-title"> <span class="material-icons">lightbulb</span> Key Findings </h2> <div class="section-content"> <div class="findings-list"> <div class="finding-item"> <span class="material-icons">check_circle</span> <div>Prompts exhibit distinct compositional patterns compared to other text corpora</div> </div> <div class="finding-item"> <span class="material-icons">check_circle</span> <div>Domain-specific variations in prompt construction across different applications</div> </div> <div class="finding-item"> <span class="material-icons">check_circle</span> <div>Unique linguistic properties distinguish prompts from literature and web content</div> </div> <div class="finding-item"> <span class="material-icons">check_circle</span> <div>Prompts tend to be more directive and task-oriented than general text</div> </div> </div> </div> </div> <!-- Optimization Approach Section --> <div class="section"> <h2 class="section-title"> <span class="material-icons">tune</span> Optimization Approach </h2> <div class="section-content"> <p>Novel prompt optimization method leveraging syntactic embeddings:</p> <div class="optimization-diagram"> <div class="diagram-step"> <span class="material-icons">text_fields</span> <div>Extract POS & Dependency Features</div> </div> <div class="diagram-arrow">→</div> <div class="diagram-step"> <span class="material-icons">hub</span> <div>Identify Centroid Representation</div> </div> <div class="diagram-arrow">→</div> <div class="diagram-step"> <span class="material-icons">edit</span> <div>Guide LLMs to Rewrite Prompts</div> </div> </div> <p>Results in improved meaningfulness and quality of model outputs.</p> </div> </div> <!-- Impact and Applications Section --> <div class="section"> <h2 class="section-title"> <span class="material-icons">insights</span> Impact and Applications </h2> <div class="section-content"> <div class="findings-list"> <div class="finding-item"> <span class="material-icons">star</span> <div>First comprehensive compilation of prompt datasets</div> </div> <div class="finding-item"> <span class="material-icons">star</span> <div>Provides foundation for systematic prompt engineering research</div> </div> <div class="finding-item"> <span class="material-icons">star</span> <div>Enables more effective prompt selection and refinement</div> </div> <div class="finding-item"> <span class="material-icons">star</span> <div>Facilitates broader LLM deployment across diverse applications</div> </div> </div> </div> </div> <!-- Resources Section --> <div class="section"> <h2 class="section-title"> <span class="material-icons">folder_open</span> Resources </h2> <div class="section-content"> <p>Datasets and code available for research use:</p> <a href="https://anonymous.4open.science/r/LLM-Prompt-Datasets-7416" class="resource-link" target="_blank"> <span class="material-icons">link</span> https://anonymous.4open.science/r/LLM-Prompt-Datasets-7416 </a> <p style="margin-top: 10px;">Over 1.22 TB of curated prompt data for research use</p> </div> </div> </div> </body> </html>

讨论回复

0 条回复

还没有人回复,快来发表你的看法吧!