<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Large Language Model Prompt Datasets: An In-depth Analysis and Insights</title>
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500;700&family=Roboto+Slab:wght@400;700&display=swap" rel="stylesheet">
<link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet">
<style>
:root {
--primary: #1565C0;
--primary-light: #5e92f3;
--primary-dark: #003c8f;
--secondary: #26A69A;
--secondary-light: #64D8CB;
--secondary-dark: #00766C;
--text-on-primary: #ffffff;
--text-primary: #212121;
--text-secondary: #757575;
--background: #f5f7fa;
--card-bg: #ffffff;
--accent: #FF5722;
}
* {
margin: 0;
padding: 0;
box-sizing: border-box;
}
body {
font-family: 'Roboto', sans-serif;
color: var(--text-primary);
background-color: var(--background);
line-height: 1.6;
}
.poster-container {
width: 720px;
min-height: 960px;
margin: 0 auto;
padding: 40px;
background: linear-gradient(135deg, #e3f2fd, #bbdefb);
position: relative;
overflow: hidden;
}
.poster-container::before {
content: "";
position: absolute;
top: -150px;
right: -150px;
width: 400px;
height: 400px;
border-radius: 50%;
background: radial-gradient(circle, rgba(38, 166, 154, 0.2) 0%, rgba(38, 166, 154, 0) 70%);
z-index: 0;
}
.poster-container::after {
content: "";
position: absolute;
bottom: -100px;
left: -100px;
width: 300px;
height: 300px;
border-radius: 50%;
background: radial-gradient(circle, rgba(21, 101, 192, 0.2) 0%, rgba(21, 101, 192, 0) 70%);
z-index: 0;
}
.header {
text-align: center;
margin-bottom: 30px;
position: relative;
z-index: 1;
}
.title {
font-family: 'Roboto Slab', serif;
font-size: 40px;
font-weight: 700;
color: var(--primary-dark);
margin-bottom: 15px;
line-height: 1.2;
}
.authors {
font-size: 18px;
color: var(--text-secondary);
margin-bottom: 5px;
}
.affiliations {
font-size: 16px;
color: var(--text-secondary);
font-style: italic;
margin-bottom: 5px;
}
.date {
font-size: 16px;
color: var(--text-secondary);
}
.section {
background-color: var(--card-bg);
border-radius: 12px;
padding: 20px;
margin-bottom: 25px;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
position: relative;
z-index: 1;
}
.section-title {
font-family: 'Roboto Slab', serif;
font-size: 24px;
font-weight: 700;
color: var(--primary);
margin-bottom: 15px;
display: flex;
align-items: center;
}
.section-title .material-icons {
margin-right: 10px;
color: var(--primary);
}
.section-content {
font-size: 16px;
color: var(--text-primary);
}
.highlight {
background-color: rgba(255, 235, 59, 0.3);
padding: 0 3px;
border-radius: 3px;
}
.stat-highlight {
font-size: 22px;
font-weight: 700;
color: var(--secondary-dark);
margin-right: 5px;
}
.data-sources {
display: flex;
flex-wrap: wrap;
gap: 10px;
margin-top: 10px;
}
.source-item {
display: flex;
align-items: center;
background-color: rgba(38, 166, 154, 0.1);
padding: 8px 12px;
border-radius: 20px;
font-size: 14px;
}
.source-item .material-icons {
font-size: 18px;
margin-right: 5px;
color: var(--secondary);
}
.taxonomy-list {
display: flex;
flex-wrap: wrap;
gap: 10px;
margin-top: 10px;
}
.taxonomy-item {
background-color: rgba(21, 101, 192, 0.1);
padding: 8px 12px;
border-radius: 8px;
font-size: 14px;
border-left: 4px solid var(--primary);
}
.analysis-levels {
display: flex;
justify-content: space-between;
margin-top: 15px;
}
.analysis-level {
flex: 1;
text-align: center;
padding: 10px;
background-color: rgba(21, 101, 192, 0.05);
border-radius: 8px;
margin: 0 5px;
}
.analysis-level-title {
font-weight: 500;
color: var(--primary);
margin-bottom: 5px;
}
.findings-list {
margin-top: 10px;
}
.finding-item {
display: flex;
margin-bottom: 8px;
}
.finding-item .material-icons {
color: var(--secondary);
margin-right: 10px;
flex-shrink: 0;
}
.optimization-diagram {
display: flex;
align-items: center;
justify-content: space-between;
margin: 20px 0;
padding: 15px;
background-color: rgba(255, 255, 255, 0.7);
border-radius: 8px;
border: 1px dashed var(--primary-light);
}
.diagram-step {
text-align: center;
flex: 1;
}
.diagram-step .material-icons {
font-size: 36px;
color: var(--primary);
margin-bottom: 5px;
}
.diagram-arrow {
color: var(--primary);
font-size: 24px;
}
.resource-link {
display: inline-flex;
align-items: center;
background-color: var(--primary);
color: white;
padding: 10px 15px;
border-radius: 8px;
text-decoration: none;
margin-top: 10px;
font-weight: 500;
}
.resource-link .material-icons {
margin-right: 8px;
}
</style>
</head>
<body>
<div class="poster-container">
<!-- Header Section -->
<div class="header">
<h1 class="title">Large Language Model Prompt Datasets: An In-depth Analysis and Insights</h1>
<p class="authors">Yuanming Zhang*, Yan Lin*, Arijit Khan†, Huaiyu Wan</p>
<p class="affiliations">Beijing Jiaotong University, Aalborg University, Bowling Green State University</p>
<p class="date">October 10, 2025</p>
</div>
<!-- Abstract/Introduction Section -->
<div class="section">
<h2 class="section-title">
<span class="material-icons">description</span>
Abstract
</h2>
<div class="section-content">
A prompt is a natural language instruction that defines a specific task for a large language model (LLM) and serves as the primary interface for human-LLM interaction. With the growing deployment of LLMs, diverse prompt datasets are emerging from platforms such as GitHub and social media. These datasets span a wide array of applications and content types, facilitating both broader LLM utilization and improved prompt engineering.
</div>
</div>
<!-- Data Collection Section -->
<div class="section">
<h2 class="section-title">
<span class="material-icons">storage</span>
Data Collection
</h2>
<div class="section-content">
<p>Comprehensive collection of <span class="stat-highlight">1.22 TB</span> of data, comprising <span class="stat-highlight">673M+</span> prompt instances from <span class="stat-highlight">129</span> heterogeneous sources:</p>
<div class="data-sources">
<div class="source-item">
<span class="material-icons">dataset</span>
Dataset Platforms
</div>
<div class="source-item">
<span class="material-icons">school</span>
Academic Publications
</div>
<div class="source-item">
<span class="material-icons">code</span>
Public Repositories
</div>
<div class="source-item">
<span class="material-icons">forum</span>
Social Media
</div>
</div>
</div>
</div>
<!-- Taxonomy Section -->
<div class="section">
<h2 class="section-title">
<span class="material-icons">account_tree</span>
Taxonomy
</h2>
<div class="section-content">
<p>Hierarchical categorization of LLM prompt datasets by:</p>
<div class="taxonomy-list">
<div class="taxonomy-item">Downstream Tasks</div>
<div class="taxonomy-item">Languages</div>
<div class="taxonomy-item">Engineering Techniques</div>
<div class="taxonomy-item">Attributes</div>
<div class="taxonomy-item">Modalities</div>
</div>
</div>
</div>
<!-- Analysis Methodology Section -->
<div class="section">
<h2 class="section-title">
<span class="material-icons">analytics</span>
Analysis Methodology
</h2>
<div class="section-content">
<p>Multi-level linguistic analysis across three dimensions on seven representative datasets:</p>
<div class="analysis-levels">
<div class="analysis-level">
<div class="analysis-level-title">Lexical</div>
<div>Token distribution, vocabulary analysis</div>
</div>
<div class="analysis-level">
<div class="analysis-level-title">Syntactic</div>
<div>Dependency parsing, POS tagging, TF-IDF</div>
</div>
<div class="analysis-level">
<div class="analysis-level-title">Semantic</div>
<div>Topic modeling, semantic similarity</div>
</div>
</div>
</div>
</div>
<!-- Key Findings Section -->
<div class="section">
<h2 class="section-title">
<span class="material-icons">lightbulb</span>
Key Findings
</h2>
<div class="section-content">
<div class="findings-list">
<div class="finding-item">
<span class="material-icons">check_circle</span>
<div>Prompts exhibit distinct compositional patterns compared to other text corpora</div>
</div>
<div class="finding-item">
<span class="material-icons">check_circle</span>
<div>Domain-specific variations in prompt construction across different applications</div>
</div>
<div class="finding-item">
<span class="material-icons">check_circle</span>
<div>Unique linguistic properties distinguish prompts from literature and web content</div>
</div>
<div class="finding-item">
<span class="material-icons">check_circle</span>
<div>Prompts tend to be more directive and task-oriented than general text</div>
</div>
</div>
</div>
</div>
<!-- Optimization Approach Section -->
<div class="section">
<h2 class="section-title">
<span class="material-icons">tune</span>
Optimization Approach
</h2>
<div class="section-content">
<p>Novel prompt optimization method leveraging syntactic embeddings:</p>
<div class="optimization-diagram">
<div class="diagram-step">
<span class="material-icons">text_fields</span>
<div>Extract POS & Dependency Features</div>
</div>
<div class="diagram-arrow">→</div>
<div class="diagram-step">
<span class="material-icons">hub</span>
<div>Identify Centroid Representation</div>
</div>
<div class="diagram-arrow">→</div>
<div class="diagram-step">
<span class="material-icons">edit</span>
<div>Guide LLMs to Rewrite Prompts</div>
</div>
</div>
<p>Results in improved meaningfulness and quality of model outputs.</p>
</div>
</div>
<!-- Impact and Applications Section -->
<div class="section">
<h2 class="section-title">
<span class="material-icons">insights</span>
Impact and Applications
</h2>
<div class="section-content">
<div class="findings-list">
<div class="finding-item">
<span class="material-icons">star</span>
<div>First comprehensive compilation of prompt datasets</div>
</div>
<div class="finding-item">
<span class="material-icons">star</span>
<div>Provides foundation for systematic prompt engineering research</div>
</div>
<div class="finding-item">
<span class="material-icons">star</span>
<div>Enables more effective prompt selection and refinement</div>
</div>
<div class="finding-item">
<span class="material-icons">star</span>
<div>Facilitates broader LLM deployment across diverse applications</div>
</div>
</div>
</div>
</div>
<!-- Resources Section -->
<div class="section">
<h2 class="section-title">
<span class="material-icons">folder_open</span>
Resources
</h2>
<div class="section-content">
<p>Datasets and code available for research use:</p>
<a href="https://anonymous.4open.science/r/LLM-Prompt-Datasets-7416" class="resource-link" target="_blank">
<span class="material-icons">link</span>
https://anonymous.4open.science/r/LLM-Prompt-Datasets-7416
</a>
<p style="margin-top: 10px;">Over 1.22 TB of curated prompt data for research use</p>
</div>
</div>
</div>
</body>
</html>
登录后可参与表态
讨论回复
0 条回复还没有人回复,快来发表你的看法吧!