Loading...
正在加载...
请稍候

大语言模型提示数据集:深入分析与见解

✨步子哥 (steper) 2025年12月11日 04:48
<!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>大语言模型提示数据集:深入分析与见解</title> <link href="https://fonts.googleapis.com/css2?family=Noto+Sans+SC:wght@300;400;500;700&family=Noto+Serif+SC:wght@400;700&display=swap" rel="stylesheet"> <link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet"> <style> :root { --primary: #1565C0; --primary-light: #5e92f3; --primary-dark: #003c8f; --secondary: #26A69A; --secondary-light: #64D8CB; --secondary-dark: #00766C; --text-on-primary: #ffffff; --text-primary: #212121; --text-secondary: #757575; --background: #f5f7fa; --card-bg: #ffffff; --accent: #FF5722; } * { margin: 0; padding: 0; box-sizing: border-box; } body { font-family: 'Noto Sans SC', sans-serif; color: var(--text-primary); background-color: var(--background); line-height: 1.6; } .poster-container { width: 720px; min-height: 960px; margin: 0 auto; padding: 40px; background: linear-gradient(135deg, #e3f2fd, #bbdefb); position: relative; overflow: hidden; } .poster-container::before { content: ""; position: absolute; top: -150px; right: -150px; width: 400px; height: 400px; border-radius: 50%; background: radial-gradient(circle, rgba(38, 166, 154, 0.2) 0%, rgba(38, 166, 154, 0) 70%); z-index: 0; } .poster-container::after { content: ""; position: absolute; bottom: -100px; left: -100px; width: 300px; height: 300px; border-radius: 50%; background: radial-gradient(circle, rgba(21, 101, 192, 0.2) 0%, rgba(21, 101, 192, 0) 70%); z-index: 0; } .header { text-align: center; margin-bottom: 30px; position: relative; z-index: 1; } .title { font-family: 'Noto Serif SC', serif; font-size: 40px; font-weight: 700; color: var(--primary-dark); margin-bottom: 15px; line-height: 1.2; } .authors { font-size: 18px; color: var(--text-secondary); margin-bottom: 5px; } .affiliations { font-size: 16px; color: var(--text-secondary); font-style: italic; margin-bottom: 5px; } .date { font-size: 16px; color: var(--text-secondary); } .section { background-color: var(--card-bg); border-radius: 12px; padding: 20px; margin-bottom: 25px; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08); position: relative; z-index: 1; } .section-title { font-family: 'Noto Serif SC', serif; font-size: 24px; font-weight: 700; color: var(--primary); margin-bottom: 15px; display: flex; align-items: center; } .section-title .material-icons { margin-right: 10px; color: var(--primary); } .section-content { font-size: 16px; color: var(--text-primary); } .highlight { background-color: rgba(255, 235, 59, 0.3); padding: 0 3px; border-radius: 3px; } .stat-highlight { font-size: 22px; font-weight: 700; color: var(--secondary-dark); margin-right: 5px; } .data-sources { display: flex; flex-wrap: wrap; gap: 10px; margin-top: 10px; } .source-item { display: flex; align-items: center; background-color: rgba(38, 166, 154, 0.1); padding: 8px 12px; border-radius: 20px; font-size: 14px; } .source-item .material-icons { font-size: 18px; margin-right: 5px; color: var(--secondary); } .taxonomy-list { display: flex; flex-wrap: wrap; gap: 10px; margin-top: 10px; } .taxonomy-item { background-color: rgba(21, 101, 192, 0.1); padding: 8px 12px; border-radius: 8px; font-size: 14px; border-left: 4px solid var(--primary); } .analysis-levels { display: flex; justify-content: space-between; margin-top: 15px; } .analysis-level { flex: 1; text-align: center; padding: 10px; background-color: rgba(21, 101, 192, 0.05); border-radius: 8px; margin: 0 5px; } .analysis-level-title { font-weight: 500; color: var(--primary); margin-bottom: 5px; } .findings-list { margin-top: 10px; } .finding-item { display: flex; margin-bottom: 8px; } .finding-item .material-icons { color: var(--secondary); margin-right: 10px; flex-shrink: 0; } .optimization-diagram { display: flex; align-items: center; justify-content: space-between; margin: 20px 0; padding: 15px; background-color: rgba(255, 255, 255, 0.7); border-radius: 8px; border: 1px dashed var(--primary-light); } .diagram-step { text-align: center; flex: 1; } .diagram-step .material-icons { font-size: 36px; color: var(--primary); margin-bottom: 5px; } .diagram-arrow { color: var(--primary); font-size: 24px; } .resource-link { display: inline-flex; align-items: center; background-color: var(--primary); color: white; padding: 10px 15px; border-radius: 8px; text-decoration: none; margin-top: 10px; font-weight: 500; } .resource-link .material-icons { margin-right: 8px; } </style> </head> <body> <div class="poster-container"> <!-- 标题部分 --> <div class="header"> <h1 class="title">大语言模型提示数据集:深入分析与见解</h1> <p class="authors">张元明*,林燕*,阿里吉特·汗†,万怀宇</p> <p class="affiliations">北京交通大学,奥尔堡大学,鲍林格林州立大学</p> <p class="date">2025年10月10日</p> </div> <!-- 摘要/引言部分 --> <div class="section"> <h2 class="section-title"> <span class="material-icons">description</span> 摘要 </h2> <div class="section-content"> 提示是一种自然语言指令,为大语言模型(LLM)定义特定任务,并作为人机交互的主要界面。随着大语言模型的广泛部署,各种提示数据集正从GitHub和社交媒体等平台涌现。这些数据集涵盖广泛的应用和内容类型,促进了更广泛的大语言模型使用和改进的提示工程。 </div> </div> <!-- 数据收集部分 --> <div class="section"> <h2 class="section-title"> <span class="material-icons">storage</span> 数据收集 </h2> <div class="section-content"> <p>全面收集了 <span class="stat-highlight">1.22 TB</span> 的数据,包含来自 <span class="stat-highlight">129</span> 个异构来源的 <span class="stat-highlight">673M+</span> 提示实例:</p> <div class="data-sources"> <div class="source-item"> <span class="material-icons">dataset</span> 数据集平台 </div> <div class="source-item"> <span class="material-icons">school</span> 学术出版物 </div> <div class="source-item"> <span class="material-icons">code</span> 公共存储库 </div> <div class="source-item"> <span class="material-icons">forum</span> 社交媒体 </div> </div> </div> </div> <!-- 分类法部分 --> <div class="section"> <h2 class="section-title"> <span class="material-icons">account_tree</span> 分类法 </h2> <div class="section-content"> <p>大语言模型提示数据集的分层分类,按以下方面:</p> <div class="taxonomy-list"> <div class="taxonomy-item">下游任务</div> <div class="taxonomy-item">语言</div> <div class="taxonomy-item">工程技术</div> <div class="taxonomy-item">属性</div> <div class="taxonomy-item">模态</div> </div> </div> </div> <!-- 分析方法部分 --> <div class="section"> <h2 class="section-title"> <span class="material-icons">analytics</span> 分析方法 </h2> <div class="section-content"> <p>对七个代表性数据集进行三个维度的多层次语言分析:</p> <div class="analysis-levels"> <div class="analysis-level"> <div class="analysis-level-title">词汇层面</div> <div>标记分布、词汇分析</div> </div> <div class="analysis-level"> <div class="analysis-level-title">句法层面</div> <div>依存解析、词性标注、TF-IDF</div> </div> <div class="analysis-level"> <div class="analysis-level-title">语义层面</div> <div>主题建模、语义相似度</div> </div> </div> </div> </div> <!-- 主要发现部分 --> <div class="section"> <h2 class="section-title"> <span class="material-icons">lightbulb</span> 主要发现 </h2> <div class="section-content"> <div class="findings-list"> <div class="finding-item"> <span class="material-icons">check_circle</span> <div>与其他文本语料库相比,提示表现出独特的组合模式</div> </div> <div class="finding-item"> <span class="material-icons">check_circle</span> <div>不同应用中提示构建的领域特定变化</div> </div> <div class="finding-item"> <span class="material-icons">check_circle</span> <div>独特的语言特性将提示与文学和网络内容区分开来</div> </div> <div class="finding-item"> <span class="material-icons">check_circle</span> <div>提示往往比一般文本更具指导性和任务导向性</div> </div> </div> </div> </div> <!-- 优化方法部分 --> <div class="section"> <h2 class="section-title"> <span class="material-icons">tune</span> 优化方法 </h2> <div class="section-content"> <p>利用句法嵌入的新颖提示优化方法:</p> <div class="optimization-diagram"> <div class="diagram-step"> <span class="material-icons">text_fields</span> <div>提取词性与依存特征</div> </div> <div class="diagram-arrow">→</div> <div class="diagram-step"> <span class="material-icons">hub</span> <div>识别质心表示</div> </div> <div class="diagram-arrow">→</div> <div class="diagram-step"> <span class="material-icons">edit</span> <div>指导大语言模型重写提示</div> </div> </div> <p>提高了模型输出的意义和质量。</p> </div> </div> <!-- 影响与应用部分 --> <div class="section"> <h2 class="section-title"> <span class="material-icons">insights</span> 影响与应用 </h2> <div class="section-content"> <div class="findings-list"> <div class="finding-item"> <span class="material-icons">star</span> <div>首次全面编译提示数据集</div> </div> <div class="finding-item"> <span class="material-icons">star</span> <div>为系统提示工程研究提供基础</div> </div> <div class="finding-item"> <span class="material-icons">star</span> <div>实现更有效的提示选择和优化</div> </div> <div class="finding-item"> <span class="material-icons">star</span> <div>促进大语言模型在各种应用中的广泛部署</div> </div> </div> </div> </div> <!-- 资源部分 --> <div class="section"> <h2 class="section-title"> <span class="material-icons">folder_open</span> 资源 </h2> <div class="section-content"> <p>数据集和代码可供研究使用:</p> <a href="https://anonymous.4open.science/r/LLM-Prompt-Datasets-7416" class="resource-link" target="_blank"> <span class="material-icons">link</span> https://anonymous.4open.science/r/LLM-Prompt-Datasets-7416 </a> <p style="margin-top: 10px;">超过1.22 TB的精选提示数据供研究使用</p> </div> </div> </div> </body> </html>

讨论回复

0 条回复

还没有人回复,快来发表你的看法吧!